Neuroprotective effects of betulinic acid hydroxamate in intraventricular hemorrhage-induced brain damage in immature rats
Loading...
Official URL
Full text at PDC
Publication date
2022
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Citation
Del Pozo, A., Silva, L., Romero, A., De Hoz-Rivera, M., Villa, M., Martínez-Vega, M., Prados, M. E., Muñoz, E., & Martínez-Orgado, J. (2022). Neuroprotective Effects of Betulinic Acid Hydroxamate in Intraventricular Hemorrhage-Induced Brain Damage in Immature Rats. Nutrients, 14(24), 5286. https://doi.org/10.3390/nu14245286
Abstract
Intraventricular hemorrhage (IVH) is an important cause of long-term disability in extremely preterm infants, with no current treatment. We aimed to study in an IVH model in immature rats the neuroprotective effect of betulinic acid hydroxamate (BAH), a B55α/PP2A activator that inhibits the activity of the hypoxia-inducing factor prolyl-hydroxylase type 2. IVH was induced in 1-day-old (P1) Wistar rats by the left periventricular injection of Clostridial collagenase. Then, pups received i.p. vehicle or BAH 3 mg/kg single dose. At P6, P14 and P45, brain damage (area of damage, neurobehavioral deficits, Lactate/N-acetylaspartate ratio), white matter injury (WMI: corpus callosum atrophy and myelin basic protein signal reduction) and inflammation (TLR4, NF-κB and TNFα expression), excitotoxicity (Glutamate/N-acetylspartate) and oxidative stress (protein nitrosylation) were evaluated. BAH treatment did not reduce the volume of brain damage, but it did reduce perilesional tissue damage, preventing an IVH-induced increase in Lac/NAA. BAH restored neurobehavioral performance at P45 preventing WMI. BAH prevented an IVH-induced increase in inflammation, excitotoxicity and oxidative stress. In conclusion, in immature rats, BAH reduced IVH-induced brain damage and prevented its long-term functional consequences, preserving normal myelination in a manner related to the modulation of inflammation, excitotoxicity and oxidative stress.