Exploring the Origin of the Thermal Sensitivity of Near-Infrared-II Emitting Rare Earth Nanoparticles

dc.contributor.authorHamraoui, Khouloud
dc.contributor.authorTorres Vera, Vivian Andrea
dc.contributor.authorZabala Gutiérrez, Irene
dc.contributor.authorCasillas Rubio, Alejandro
dc.contributor.authorAlqudwa Fattouh, Mohammed
dc.contributor.authorBenayas, Antonio
dc.contributor.authorMarín, Riccardo
dc.contributor.authorNatile, Marta María
dc.contributor.authorManso Silván, Miguel
dc.contributor.authorRubio Zuazo, Juan
dc.contributor.authorJaque, Daniel
dc.contributor.authorMelle Hernández, Sonia
dc.contributor.authorGómez Calderón, Óscar
dc.contributor.authorRubio Retama, Benito Jorge
dc.date.accessioned2024-01-12T17:41:55Z
dc.date.available2024-01-12T17:41:55Z
dc.date.issued2023-06-30
dc.description.abstractRare-earth doped nanoparticles (RENPs) are attracting increasing interest in materials science due to their optical, magnetic, and chemical properties. RENPs can emit and absorb radiation in the second biological window (NIR-II, 1000-1400 nm) making them ideal optical probes for photoluminescence (PL) in vivo imaging. Their narrow emission bands and long PL lifetimes enable autofluorescence-free multiplexed imaging. Furthermore, the strong temperature dependence of the PL properties of some of these RENPs makes remote thermal imaging possible. This is the case of neodymium and ytterbium co-doped NPs that have been used as thermal reporters for in vivo diagnosis of, for instance, inflammatory processes. However, the lack of knowledge about how the chemical composition and architecture of these NPs influence their thermal sensitivity impedes further optimization. To shed light on this, we have systematically studied their emission intensity, PL decay time curves, absolute PL quantum yield, and thermal sensitivity as a function of the core chemical composition and size, active-shell, and outer-inert-shell thicknesses. The results revealed the crucial contribution of each of these factors in optimizing the NP thermal sensitivity. An optimal active shell thickness of around 2 nm and an outer inert shell of 3.5 nm maximize the PL lifetime and the thermal response of the NPs due to the competition between the temperature-dependent back energy transfer, the surface quenching effects, and the confinement of active ions in a thin layer. These findings pave the way for a rational design of RENPs with optimal thermal sensitivity.en
dc.description.departmentDepto. de Óptica
dc.description.departmentDepto. de Química en Ciencias Farmacéuticas
dc.description.facultyFac. de Óptica y Optometría
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipEuropean Commission- Horizon 2020
dc.description.sponsorshipBanco Santander
dc.description.statuspub
dc.identifier.citationKhouloud Hamraoui, Vivian Andrea Torres-Vera, Irene Zabala Gutierrez, Alejandro Casillas-Rubio, Mohammed Alqudwa Fattouh, Antonio Benayas, Riccardo Marin, Marta Maria Natile, Miguel Manso Silvan, Juan Rubio-Zuazo, Daniel Jaque, Sonia Melle, Oscar G. Calderón, and Jorge Rubio-Retama ACS Applied Materials & Interfaces 2023 15 (27), 32667-32677 DOI: 10.1021/acsami.3c04125
dc.identifier.doi10.1021/acsami.3c04125
dc.identifier.essn1944-8252
dc.identifier.issn1944-8244
dc.identifier.officialurlhttps://doi.org/10.1021/acsami.3c04125
dc.identifier.relatedurlhttps://pubs.acs.org/doi/full/10.1021/acsami.3c04125#
dc.identifier.urihttps://hdl.handle.net/20.500.14352/92891
dc.issue.number27
dc.journal.titleApplied Materials and Interfaces
dc.language.isoeng
dc.page.final32677
dc.page.initial32667
dc.publisherACS Publications
dc.relation.projectIDP2022/BMD-7403 RENIM-CM
dc.relation.projectIDPR38/21-36
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106211RB-I00/ES/NANOPARTICULAS SUPERBRILLANTES PARA EL ESTUDIO DE AFECCIONES DEL SISTEMA NERVIOSO/
dc.relation.projectIDPID2021-123318OB-I00
dc.relation.projectIDTED2021-132317B-I00
dc.relation.projectIDPID2021-122806OB-I00
dc.relation.projectIDCT63/19-CT64/19
dc.relation.projectIDRYC2021-032913-I
dc.relation.projectID2019-T1/IND-14014
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/Number of agreement
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu539.12
dc.subject.cdu539.2:620.1
dc.subject.cdu535.37
dc.subject.keywordRare earth nanoparticles
dc.subject.keywordCore@shell@shell
dc.subject.keywordThermometry
dc.subject.keywordPhotoluminescence emission
dc.subject.keywordNIR
dc.subject.keywordQuantum yield
dc.subject.keywordPL lifetime
dc.subject.ucmÓptica (Física)
dc.subject.ucmPartículas
dc.subject.unesco2209 Óptica
dc.subject.unesco2208.07 Física de Partículas
dc.titleExploring the Origin of the Thermal Sensitivity of Near-Infrared-II Emitting Rare Earth Nanoparticlesen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublicationba91eb00-ee3f-43a5-afd7-f106bf5ea876
relation.isAuthorOfPublication24f8ceb9-f02a-41ac-851f-5182f31d41a4
relation.isAuthorOfPublication6080119e-4199-4330-a163-3f58a24a1160
relation.isAuthorOfPublicatione3951eb6-c03f-4cc1-b643-8450fedd1f67
relation.isAuthorOfPublicatione472b936-73b0-45a5-b92a-7b3be8543cc8
relation.isAuthorOfPublication.latestForDiscoverye472b936-73b0-45a5-b92a-7b3be8543cc8
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acsami.3c04125.pdf
Size:
6.91 MB
Format:
Adobe Portable Document Format
Collections