Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An extension of Bochner's problem: exceptional invariant subspaces

dc.contributor.authorGómez-Ullate Otaiza, David
dc.contributor.authorKamran, Niky
dc.contributor.authorMilson, Robert
dc.date.accessioned2023-06-20T03:53:44Z
dc.date.available2023-06-20T03:53:44Z
dc.date.issued2010-05
dc.description© 2009 Elsevier Inc. We thank Peter Crooks for reviewing the manuscript and providing many useful remarks. We are also grateful to Jorge Arvesú, Norrie Everitt, Mourad Ismail, Francisco Marcellán, Lance Littlejohn and André Ronveaux for their helpful comments on the manuscript. This work was supported in part by the Ramón y Cajal program of the Spanish Ministry of Science and Technology; the Dirección General de Investigación [grants MTM2006-00478 and MTM2006- 14603 to D.G.U.] and the National Science and Engineering Reserach Council of Canada [grants RGPIN 105490- 2004 to N.K. and RGPIN-228057-2004 to R.M.]
dc.description.abstractWe prove an extension of Bochner's classical result that characterizes the classical polynomial families as eigenfunctions of a second-order differential operator with polynomial coefficients. The extended result involves considering differential operators with rational coefficients and the requirement is that they have a numerable sequence of polynomial eigenfunctions p(1), p(2),.. of all degrees except for degree zero. The main theorem of the paper provides a characterization of all such differential operators. The existence of such differential operators and polynomial sequences is based on the concept of exceptional polynomial subspaces, and the converse part of the main theorem rests on the classification of codimension one exceptional subspaces under projective transformations, which is performed in this paper.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science and Technology; Direccion General de Investigacion
dc.description.sponsorshipNational Science and Engineering Research Council of Canada
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30808
dc.identifier.doi10.1016/j.jat.2009.11.002
dc.identifier.issn0021-9045
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.jat.2009.11.002
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.relatedurlhttp://arxiv.org/abs/0805.3376
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44631
dc.issue.number5
dc.journal.titleJournal of approximation theory
dc.language.isoeng
dc.page.final1006
dc.page.initial987
dc.publisherAcademic Press-Elsevier Science
dc.relation.projectIDMTM2006-00478
dc.relation.projectIDMTM2006-14603
dc.relation.projectIDRGPIN 105490-2004
dc.relation.projectIDRGPIN-228057-2004
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordQuasi-exact solvability
dc.subject.keywordOrthogonal polynomials
dc.subject.keywordDifferential-equation
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleAn extension of Bochner's problem: exceptional invariant subspaces
dc.typejournal article
dc.volume.number162
dcterms.references[1] S. Bochner, Über Sturm-Liouvillsche Polynomsysteme , Math. Z. 29 (1929) 730–736. [2] V.G. Bagrov and B.F. Samsonov, Darboux transformation, factorization and supersymmetry in one-dimensional quantum mechanics, Teoret. Mat. Fiz. 104 (1995) 356–367. [3] S. Yu. Dubov, V. M. Eleonskiῐ and N. E. Kulagin, Equidistant spectra of anharmonic oscillators, Zh. Eksper. Teoret. Fiz. 102 (1992) 814–825. [4] W. N. Everitt, L. L. Littlejohn, R. Wellman, The Sobolev orthogonality and spectral analysis of the Laguerre polynomials L −k n for positive integers k, J. Comput. Appl. Math. 171 (2004), 199–234. [5] B. G. Giraud, Constrained orthogonal polynomials, J. Phys. A 38 (2005) 7299– 7311. [6] D. Gómez-Ullate, N. Kamran and R. Milson, Supersymmetry and algebraic Darboux transformations, J. Phys. A 37 (2004) 10065–10078. [7] D. Gómez-Ullate, N. Kamran and R. Milson, Quasi-exact solvability and the direct approach to invariant subspaces, J. Phys. A 38(9) (2005) 2005–2019. [8] D. Gómez-Ullate, N. Kamran and R. Milson, Quasi-exact solvability in a general polynomial setting, Inverse Problems 23(5) (2007) 1915–1942. [9] D. Gómez-Ullate, N. Kamran and R. Milson, On an extended class of orthogonal polynomials defined by a Sturm-Liouville problem, arXiV math-ph 0805.3939 [10] E. Heine, Theorie der Kugelfunctionen und der verwandten Functionen, Berlin, 1878. [11] M.E.H. Ismail and W. van Assche, Classical and quantum orthogonal polynomials in one variable, Encyclopedia in Mathematics, Cambridge University Press, Cambridge, 2005. [12] P. Lesky, Die Charakterisierung der klassischen orthogonalen Polynome durch SturmLiouvillesche Differentialgleichungen,Arch. Rat. Mech. Anal. 10 (1962), 341–352. [13] G. Post and A. Turbiner, Classification of linear differential operators with an invariant subspace of monomials, Russian J. Math. Phys. 3(1) (1995) 113–122. [14] A. Ronveaux, Sur l’équation différentielle du second ordre satisfaite par une classe de polynômes orthogonaux semi-classiques, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 5, 163–166. [15] A. Ronveaux and F. Marcell´an, Differential equation for classical-type orthogonal polynomials, Canad. Math. Bull. 32 (1989), no. 4, 404–411. [16] E.J. Routh, On some properties of certain solutions of a differential equation of the second order, Proc. London Math. Soc., 16 (1885), 245-261. [17] T.J. Stieltjes, Sur certains polynômes qui vérifient une équation différentielle du second ordre et sur la théorie des fonctions de Lamé, Acta Mathematica 6 (1885) 321–326. [18] G. Szegö, Orthogonal polynomials, Colloquium Publications 23, American Mathematical Society, Providence, 1939. [19] A. V. Turbiner, Quasi-exactly-solvable problems and sl(2) algebra, Comm. Math. Phys. 118(3) (1988) 467–474. [20] V. B. Uvarov, The connection between systems of polynomials that are orthogonal with respect to different distribution functions, USSR Computat. Math. and Math. Phys. 9 (1969), 25–36.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate13preprint.pdf
Size:
233.93 KB
Format:
Adobe Portable Document Format

Collections