Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nonclassicality in weak measurements

dc.contributor.authorJohansen, Lars M.
dc.contributor.authorLuis Aina, Alfredo
dc.date.accessioned2023-06-20T10:57:25Z
dc.date.available2023-06-20T10:57:25Z
dc.date.issued2004-11-29
dc.description©2004 The American Physical Society
dc.description.abstractWe examine weak measurements of arbitrary observables where the object is prepared in a mixed state and on which measurements with imperfect detectors are made. The weak value of an observable can be expressed as a conditional expectation value over an infinite class of different generalized Kirkwood quasiprobability distributions. "Strange" weak values for which the real part exceeds the eigenvalue spectrum of the observable can only be found if the Terletsky-Margenau-Hill distribution is negative or, equivalently, if the real part of the weak value of the density operator is negative. We find that a classical model of a weak measurement exists whenever the Terletsky-Margenau-Hill representation of the observable equals the classical representation of the observable and the Terletsky-Margenau-Hill distribution is non-negative. Strange weak values alone are not sufficient to obtain a contradiction with classical models. We propose feasible weak measurements of photon number of the radiation field. Negative weak values of energy contradict all classical stochastic models, whereas negative weak values of photon number contradict all classical stochastic models where the energy is bounded from below by the zero-point energy. We examine coherent states in particular and find negative weak values with probabilities of 16% for kinetic energy (or squared field quadrature), 8% for harmonic oscillator energy, and 50% for photon number. These experiments are robust against detector inefficiency and thermal noise.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31420
dc.identifier.doi10.1103/PhysRevA.70.052115
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.70.052115
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51511
dc.issue.number5
dc.journal.titlePhysical review A
dc.language.isoeng
dc.page.final052115_12
dc.page.initial052115_1
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordQuantum-mechanics
dc.subject.keywordCoherent states
dc.subject.keywordLocal values
dc.subject.keywordParticle
dc.subject.keywordOptics
dc.subject.keywordTime
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleNonclassicality in weak measurements
dc.typejournal article
dc.volume.number70
dcterms.references[1] H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977). [2] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988). [3] L. M. Johansen, Phys. Rev. Lett. 93, 120402 (2004). [4] J. G. Kirkwood, Phys. Rev. 44, 31 (1933). [5] C. L. Mehta, J. Math. Phys. 5, 677 (1964). [6] Y. P. Terletsky, Zh. Eksp. Teor. Fiz. 7, 1290 (1937). [7] H. Margenau and R. N. Hill, Prog. Theor. Phys. 26, 722 (1961). [8] R. J. Glauber, Phys. Rev. 131, 2766 (1963). [9] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963). [10] U. M. Titulaer and R. J. Glauber, Phys. Rev. 140, B676 (1965). [11] M. Hillery, Phys. Lett. 111A, 409 (1985). [12] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995). [13] V. V. Dodonov, J. Opt. B: Quantum Semiclassical Opt. 4, R1 (2002). [14] M. Hillery, Phys. Rev. A 35, 725 (1987). [15] C. T. Lee, Phys. Rev. A 44, R2775 (1991). [16] W. Vogel, Phys. Rev. Lett. 84, 1849 (2000). [17] T. Richter and W. Vogel, Phys. Rev. Lett. 89, 283601 (2002). [18] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955). [19] F. Haake and D. F. Walls, Phys. Rev. A 36, 730 (1987). [20] A. M. Steinberg, Phys. Rev. A 52, 32 (1995). [21] A. M. Steinberg, Phys. Rev. Lett. 74, 2405 (1995). [22] L. Cohen, Phys. Lett. A 212, 315 (1996). [23] R. I. Sutherland, J. Math. Phys. 23, 2389 (1982). [24] L. Cohen and C. Lee, Found. Phys. 17, 561 (1987). [25] J. G. Muga, J. P. Palao, and R. Sala, Phys. Lett. A 238, 90 (1998). [26] L. M. Johansen, Phys. Lett. A 322, 298 (2004). [27] A. Luis, Phys. Rev. A 67, 064101 (2003). [28] Y. Aharonov, S. Popescu, D. Rohrlich, and L. Vaidman, Phys. Rev. A 48, 4084 (1993). [29] L. M. Johansen, Phys. Lett. A 329, 184 (2004). [30] D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994). [31] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997). [32] G. Lachs, Phys. Rev. 138, B1012 (1965). [33] L. M. Johansen, J. Opt. B: Quantum Semiclassical Opt. 6, L21 (2004).
dspace.entity.typePublication
relation.isAuthorOfPublicationb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2
relation.isAuthorOfPublication.latestForDiscoveryb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luis,A67libre.pdf
Size:
672.64 KB
Format:
Adobe Portable Document Format

Collections