Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lectures on 3-fold simple coverings and 3-manifolds

dc.book.titleCombinatorial methods in topology and algebraic geometry
dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.editorHarper, John R.
dc.contributor.editorMandelbaum, Richard
dc.date.accessioned2023-06-21T02:42:59Z
dc.date.available2023-06-21T02:42:59Z
dc.date.issued1985
dc.description.abstractThe author presents various ideas, proofs, constructions and tricks connected with branched coverings of 3-manifolds. After an introductory section on 2-fold branched coverings of S3 the main theme of 3-fold irregular coverings is introduced. A short proof is given of the Montesinos-Hilden theorem concerning the presentation of a (closed, oriented) 3-manifold as an irregular 3-fold covering of S3. Coloured links, associated with irregular 3-fold coverings, are discussed, and moves on coloured links which do not alter the associated covering. The last section contains an elegant proof of a theorem of Hilden and the author: Every closed oriented 3-manifold is a simple 3-fold covering of S3 branched over a knot so that the branching cover bounds an embedded disc. A consequence of this is the fact that every such 3-manifold is parallelizable. Finally the following result of H. M. Hilden , M. T. Lozano and the author [Trans. Amer. Math. Soc. 279 (1983), no. 2, 729–735;] is proved: Every closed oriented 3-manifold is the pullback of any 3-fold simple branched covering p:S3→S3 and some smooth map Ω:S3→S3 transversal to the branching set of p. This implies an earlier result of Hilden: the possibility to embed any closed oriented 3-manifold M in S3×D2 so that the composition with the projection in the first factor is a 3-fold simple covering.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22069
dc.identifier.isbn0-8218-5039-3
dc.identifier.officialurlhttp://www.ams.org/bookstore/conmseries
dc.identifier.relatedurlhttp://www.ams.org/home/page
dc.identifier.urihttps://hdl.handle.net/20.500.14352/65466
dc.issue.number44
dc.language.isoeng
dc.page.final177
dc.page.initial157
dc.page.total349
dc.publication.placeProvidence
dc.publisherAmerican Mathematical Society
dc.relation.ispartofseriesContemporary Mathematics
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.keyword3-manifolds as branched coverings of the 3-sphere
dc.subject.keywordsurfaces as branched covers of S 2
dc.subject.keywordDehn surgery
dc.subject.keywordsimple covers
dc.subject.keywordcoloured links
dc.subject.keywordPoincaré conjecture
dc.subject.keywordparallelizable
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleLectures on 3-fold simple coverings and 3-manifolds
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos100.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format