Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Electronic transport properties of Ti-impurity band in Si

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorOlea Ariza, Javier
dc.date.accessioned2023-06-20T03:41:15Z
dc.date.available2023-06-20T03:41:15Z
dc.date.issued2009-04-21
dc.description© 2009 IOP Publishing Ltd. The authors would like to acknowledge the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for SIMS measurements, the Center for Microanalysis of Materials of the Universidad Autónoma de Madrid for RBS measurements, C.A.I. de difracción de rayos X of the Universidad Complutense de Madrid for GIXRD measurements and C.A.I. de Técnicas Físicas of the Universidad Complutense de Madrid for ion implantation experiments. This work was made possible thanks to the FPI (Grant No BES-2005-7063) of the Spanish Ministry of Education and Science. This work was partially supported by the Projects NUMANCIA (No S-0505/ENE/000310) founded by the Comunidad de Madrid and GENESIS-FV (No CSD2006-00004) founded by the Spanish Consolider National Programme and by U.C.M.-C.A.M. under Grant CCG07-UCM/TIC-2804.
dc.description.abstractIn this paper we show that pulsed laser melted high dose implantation of Ti in Si, above the Mott transition, produces an impurity band (IB) in this semiconductor. Using the van der Pauw method and Hall effect measurements we find strong laminated conductivity at the implanted layer and a temperature dependent decoupling between the Ti implanted layer (TIL) and the substrate. The conduction mechanism from the TIL to the substrate shows blocking characteristics that could be well explained through IB theory. Using the ATLAS code we can estimate the energetic position of the IB at 0.36 eV from the conduction band, the density of holes in this band which is closely related to the Ti atomic density and the hole mobility in this band. Band diagrams of the structure at low and high temperatures are also simulated in the ATLAS framework. The simulation obtained is fully coherent with experimental results.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFPI of the Spanish Ministry of Education and Science
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipSpanish Consolider National Programme
dc.description.sponsorshipU.C.M.-C.A.M.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25908
dc.identifier.doi10.1088/0022-3727/42/8/085110
dc.identifier.issn0022-3727
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0022-3727/42/8/085110
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44247
dc.issue.number8
dc.journal.titleJournal of Physics D-Applied Physics
dc.language.isoeng
dc.publisherIOP Publishing LTD
dc.relation.projectIDBES-2005-7063
dc.relation.projectIDProjects NUMANCIA-S-0505/ENE/000310
dc.relation.projectIDProject GENESIS-FV-CSD2006-00004
dc.relation.projectIDCCG07-UCM/TIC-2804
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordSolar-Cells
dc.subject.keywordSilicon
dc.subject.keywordEfficiency
dc.subject.keywordTransition
dc.subject.keywordAlloys
dc.subject.keywordFilms
dc.subject.keywordZNO
dc.subject.keywordGAN.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleElectronic transport properties of Ti-impurity band in Si
dc.typejournal article
dc.volume.number42
dcterms.references[1] Green, M.A., Emery, K., Hisikawa, Y. and Warta, W., 2007, Prog. Photovolt.: Res. Appl. 15, 425–30. [2] Luque, A. and Martí, A., 1997, Phys. Rev. Lett. 78, 5014–7. [3] Shockley, W. and Queisser, H.J., 1961, J. Appl. Phys. 32, 510–9. [4] King, R.R., Law, D.C., Edmondson, K.M., Fetzer, C.M., Kinsey, G.S., Yoon, H., Sherif, R.A. and Karam, N.H., 2007, Appl. Phys. Lett. 90, 183516. [5] Wahnón, P. and Tablero, C., 2002, Phys. Rev. B 65, 165115. [6] Shan, W., Walukiewicz, W., Ager III, J.W., Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M. and Kurtz, S.R., 1999, Phys. Rev. Lett. 82, 1221–4. [7] Yu, K.M., Walukiewicz, W., Wu, J., Shan, W., Beeman, J.W., Scarpulla, M.A., Dubon, O.D. and Becla, P., 2003, Phys. Rev. Lett. 91, 246403. [8] Yu, K.M., Walukiewicz, W., Ager III, J.W., Bour, D., Farshchi, R., Dubon, O.D., Li, S.X., Sharp, D. and Haller, E.E., 2006, Appl. Phys. Lett. 88, 092110. [9] Luque, A., Martí, A., López, N., Antolín, E., Cánovas, E., Stanley, C., Farmer, C., Caballero, L.J., Cuadra, L. and Balenzategui, J.L., 2005, Appl. Phys. Lett. 87, 083505. [10] Hsu, J.W.P., Lang, D.V., Richter, S., Kleiman, R.N., Sergent, A.M., Look, D.C. and Molnar, R.J., 2001, J. Electron. Mater. 30, 115–22. [11] Look, D.C., 2007, Superlatt. Microstruct. 42, 284–9. [12] Mavroidis, C., Harris, J.J., Jackman, R.B., Bougrioua, Z. and Moerman, I., 2003, Diamond Relat. Mater. 12, 1127–32. [13] Look, D.C., Chaflin, B. and Smith, H.E., 2008, Appl. Phys. Lett. 92, 122108. [14] Look, D.C., Reynolds, D.C., Hemsky, J.W., Sizelove, J.R., Jones, R.L. and Molnar, R.J., 1997, Phys. Rev. Lett. 79, 2273–6. [15] Look, D.C., 2007, Surf. Sci. 601, 5315–9. [16] Ley, M., Boudaden, J. and Kuznicki, Z.T., 2005, J. Appl. Phys. 98, 044905. [17] Mott, N.F., 1968, Rev. Mod. Phys. 40, 677–83. [18] Clark, M.H. and Jones, K.S., 2005, J. Appl. Phys. 97, 093525. [19] Yu, K.M., Walukiewicz, W., Scarpulla, M.A., Dubon, O.D., Wu, J., Jasinski, J., Liliental-Weber, Z., Beeman, J.W., Pillai, M.R. and Aziz, M.J., 2003, J. Appl. Phys. 94, 1043–9. [20] White, C.W., Wilson, S.R., Appleton, B.R. and Young, F.W.Jr, 1980, J. Appl. Phys. 51, 738–49. [21] Olea, J., Toledano-Luque, M., Pastor, D., González-Díaz, G. and Mártil, I., 2008, J. Appl. Phys. 104, 016105. [22] Mathiot, D. and Hocine, S., 1989, J. Appl. Phys. 66, 5862–7. [23] Beeler, F., Andersen, O.K. and Scheffler, M., 1990, Phys. Rev. B 41, 1603–24. [24] Conwell, E.M., 1956, Phys. Rev. 103, 51–61. [25] Sánchez, K., Aguilera, I., Palacios, P. and Wahnón, P., 2009, Assessment through first-principles calculations of a novel intermediate band photovoltaic material based on Ti-implanted silicon: interstitial versus substitutional origin, Phys. Rev. A submitted. [26] ATLAS Device Simulator Framework distributed by Silvaco Data Syatems Inc. 4701, (Patrick Henry Drive Bldg#6, Santa Clara, CA 95054).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,21.pdf
Size:
528.44 KB
Format:
Adobe Portable Document Format

Collections