Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nonlinear relativistic single-electron Thomson scattering power spectrum for incoming laser of arbitrary intensity

dc.contributor.authorFernández Álvarez-Estrada, Ramón
dc.contributor.authorPastor, I.
dc.contributor.authorGuasp, J.
dc.contributor.authorCastejón, F.
dc.date.accessioned2023-06-20T04:01:24Z
dc.date.available2023-06-20T04:01:24Z
dc.date.issued2012-06
dc.description© 2012 American Institute of Physics. R. F. Alvarez-Estrada acknowledges Ministerio de Ciencia e Innovacion, Spain, for financial support under Project FIS2008-01323. F. Castejon and I. Pastor also acknowledge Ministerio de Ciencia e Innovacion, Spain, for financial support under Projects ENE2008-06082/FTN and ENE2009-10181, respectively. R. F. Alvarez-Estrada and F. Castejon are associate members of Instituto de Biocomputacion y Fisica de los Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain.
dc.description.abstractThe classical nonlinear incoherent Thomson scattering power spectrum from a single relativistic electron with incoming laser radiation of any intensity, investigated numerically by the present authors in a previous publication, displayed both an approximate quadratic behavior in frequency and a redshift of the power spectrum for high intensity incoming radiation. The present work is devoted to justify, in a more general setup, those numerical findings. Those justifications are reinforced by extending suitably analytical approaches, as developed by other authors. Moreover, our analytical treatment exhibits differences between the Doppler-like frequencies for linear and circular polarization of the incoming radiation. Those differences depend nonlinearly on the laser intensity and on the electron initial velocity and do not appear to have been displayed by previous authors. Those Doppler-like frequencies and their differences are validated by new Monte Carlo computations beyond our previuos ones and reported here.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovacion (MICINN), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34815
dc.identifier.doi10.1063/1.4725190
dc.identifier.issn1070-664X
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4725190
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44816
dc.issue.number6
dc.journal.titlePhysics of plasmas
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDFIS2008-01323
dc.relation.projectIDENE2008-06082/FTN
dc.relation.projectIDENE2009-10181
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordPhysics
dc.subject.keywordFluids & Plasmas
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleNonlinear relativistic single-electron Thomson scattering power spectrum for incoming laser of arbitrary intensity
dc.typejournal article
dc.volume.number19
dcterms.references1 D. H. Froula, S. H. Glenzer, N. C. Luhmann, Jr., and J. Sheffield, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Academic, Elsevier, Amsterdam, 2011). 2 I. Hutchison, Principles of Plasma Diagnostics (Cambridge University Press, Cambridge, 2005). 3 D. E. Evans and J. Katzenstein, Rep. Prog. Phys. 32, 207 (1969). 4 M. Mattioli, “Incoherent Light Scattering from High Temperature Plasmas,” Report DPh-PFC-SPP, (EUR-CEA-FC) 752, 1974. 5 T. Matoba, T. Itagaki, T. Yamauchi, and A. Funahashi, Jpn. J. Appl. Phys., Part 118, 1127 (1979). 6 B. Weyssow, J. Plasma Phys. 43, 119 (1990). 7 O. Naito, H. Yoshida, and T. Matoba, Phys. Fluids B 5, 4256 (1993). 8 K. V. Beausang and S. L. Prunty, Plasma Phys. Controlled Fusion 50, 095001 (2008). 9 M. J. Walsh, Rev. Sci. Instrum. 77, 10E525 (2006). 10 J. S. Ross, S. H. Glenzer, J. P. Palastro, B. B. Pollock, D. Price, L. Divol, G. R. Tynan, and D. H. Froula, Phys. Rev. Lett. 104, 105001 (2010). 11 J. P. Palastro, J. S. Ross, B. Pollock, L. Divol, D. H. Froula, and S. H. Glenzer, Phys. Rev. E 81, 036411 (2010). 12 L. D. Landau and E. M. Lifchitz, The Classical Theory of Fields, 4th ed. (Pergamon, New York, 1975). 13 E. S. Sarachik and G. T. Schappert, Phys. Rev. D 1, 2738 (1970). 14 E. Essarey, S. K. Ride, and P. Sprangle, Phys. Rev. E 48, 3003 (1993). 15 S. K. Ride, E. Essarey, and M. Baine, Phys. Rev. E 52, 5425 (1995). 16 C. A. Brau, Modern Problems in Classical Electrodynamics (Oxford University Press, Oxford, 2004). 17 H. K. Avetissian, Relativistic Nonlinear Electrodynamics, Springer Series in Optical Sciences (Springer, New York, 2006). 18 J.-H. Yang, R. S. Craxton, and M. G. Haines, Plasma Phys. Controlled Fusion 53, 125006 (2011). 19 W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, MA, 1955). 20 I. Pastor, J. Guasp, R. F. Alvarez-Estrada, and F. Castejon, Nucl. Fusion 51, 043011 (2011). 21 J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1974). 22 R. F. Álvarez-Estrada and E. R. Martínez, An. Fis. 77, 110 (1981). 23 P. J. Duke, Synchrotron Radiation: Production and Properties, Oxford Science Publications (Oxford University Press, Oxford, 2000). 24 F. W. J. Olver, “Bessel functions of integer order,” in Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965). 25 E. Loetstedt and U. D. Jentschura, Phys. Rev. E 79, 026707 (2009).
dspace.entity.typePublication
relation.isAuthorOfPublication1d9ad3e6-2e32-4c9b-b666-73b1e18d1c0e
relation.isAuthorOfPublication.latestForDiscovery1d9ad3e6-2e32-4c9b-b666-73b1e18d1c0e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FernándezÁlvarezEstradaRamón02LIBRE.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format

Collections