Thiemann transform for gravity with matter fields
dc.contributor.author | Garay Elizondo, Luis Javier | |
dc.contributor.author | Mena Marugán, Guillermo A. | |
dc.date.accessioned | 2023-06-20T19:19:54Z | |
dc.date.available | 2023-06-20T19:19:54Z | |
dc.date.issued | 1998-12 | |
dc.description | © IOP Publishing. The authors are grateful to P. F. González Díaz for helpful conversations. This work was supported by funds provided by the DGICYT Project No. PB94–0107. | |
dc.description.abstract | The generalized Wick transform discovered by Thiemann provides a well established relation between the Euclidean and Lorentzian theories of general relativity. We extend this Thiemann transform to the Ashtekar formulation for gravity coupled with spin-1/2 fermions, a non-Abelian Yang-Mills field and a scalar field. It is proved that, on functions of the gravitational and matter phase space variables, the Thiemann transform is equivalent to the composition of an inverse Wick rotation and a constant complex scale transformation of all fields. This result also holds for functions that depend on the shift vector, the lapse function and the Lagrange multipliers of the Yang-Mills and gravitational Gauss constraints, provided that the Wick rotation is implemented by means of an analytic continuation of the lapse. In this way, the Thiemann transform is furnished with a geometric interpretation. Finally, we confirm the expectation that the generator of the Thiemann transform can be determined just from the spin of the fields and give a simple explanation for this fact. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/29939 | |
dc.identifier.doi | 10.1088/0264-9381/15/12/007 | |
dc.identifier.issn | 0264-9381 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/0264-9381/15/12/007 | |
dc.identifier.relatedurl | http://iopscience.iop.org/ | |
dc.identifier.relatedurl | http://arxiv-web2.library.cornell.edu/pdf/gr-qc/9805010.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59533 | |
dc.issue.number | 12 | |
dc.journal.title | Classical and quantum gravity | |
dc.language.iso | eng | |
dc.page.final | 3775 | |
dc.page.initial | 3763 | |
dc.publisher | IOP Publishing Ltd | |
dc.relation.projectID | PB94–0107 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Quantum-gravity | |
dc.subject.keyword | Fermions | |
dc.subject.keyword | Universe | |
dc.subject.keyword | Origin | |
dc.subject.keyword | State | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Thiemann transform for gravity with matter fields | |
dc.type | journal article | |
dc.volume.number | 15 | |
dcterms.references | [1] Thiemann T 1996 Class. Quantum Grav. 13 1383 [2] Ashtekar A 1996 Phys. Rev. D 53 2865 [3] Mena Marugán G A 1997 Geometric interpretation of Thiemann’s generalized Wick transform Preprint gr-qc/9705031, Grav. Comol. to appear [4] Ashtekar A 1991 Lectures on non-perturbative canonical gravity ed L Z Fang and R Ruffini (Singapore: World Scientific) [5] Ashtekar A, Romano J D and Tate R S 1989 Phys. Rev. D 40 2572 [6] Hawking S W 1979 The path-integral approach to quantum gravity General Relativity.– An Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press) [7] Gibbons G W, Hawking S W and Perry M J 1978 Nucl. Phys. B 138 141 [8] Mazur P O and Mottola E 1990 Nucl. Phys. B 341 187 [9] Greensite J 1993 Phys. Lett. B 300 34 Carlini A and Greensite J 1994 Phys. Rev. D 49 866 Ivashchuk V D 1997 Grav. Cosmol. 3 8 [10] See, for instance, Halliwell J J and Hawking S W 1985 Phys. Rev. D 31 1777 [11] See, for instance, D’Eath P D and Halliwell J J 1987 Phys. Rev. D 35 1100 [12] Jacobson T 1988 Class. Quantum Grav. 5 L143 [13] Faddeev L D and Slavnov A A 1980 Gauge Fields: Introduction to Quantum Theory (New York: Benjamin) [14] Hawking S W 1984 Nucl. Phys. B 239 257 [15] Mena Marugán G A 1997 Proc. Fifth Wigner Symp. (Singapore: World Scientific) to be published [16] Thiemann T 1998 Class. Quantum Grav. 15 839; 1998 Class. Quantum Grav. 15 875; 1998 Class. Quantum Grav. 15 1281 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5638c18d-1c35-40d2-8b77-eb558c27585e | |
relation.isAuthorOfPublication.latestForDiscovery | 5638c18d-1c35-40d2-8b77-eb558c27585e |
Download
Original bundle
1 - 1 of 1