Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Thiemann transform for gravity with matter fields

dc.contributor.authorGaray Elizondo, Luis Javier
dc.contributor.authorMena Marugán, Guillermo A.
dc.date.accessioned2023-06-20T19:19:54Z
dc.date.available2023-06-20T19:19:54Z
dc.date.issued1998-12
dc.description© IOP Publishing. The authors are grateful to P. F. González Díaz for helpful conversations. This work was supported by funds provided by the DGICYT Project No. PB94–0107.
dc.description.abstractThe generalized Wick transform discovered by Thiemann provides a well established relation between the Euclidean and Lorentzian theories of general relativity. We extend this Thiemann transform to the Ashtekar formulation for gravity coupled with spin-1/2 fermions, a non-Abelian Yang-Mills field and a scalar field. It is proved that, on functions of the gravitational and matter phase space variables, the Thiemann transform is equivalent to the composition of an inverse Wick rotation and a constant complex scale transformation of all fields. This result also holds for functions that depend on the shift vector, the lapse function and the Lagrange multipliers of the Yang-Mills and gravitational Gauss constraints, provided that the Wick rotation is implemented by means of an analytic continuation of the lapse. In this way, the Thiemann transform is furnished with a geometric interpretation. Finally, we confirm the expectation that the generator of the Thiemann transform can be determined just from the spin of the fields and give a simple explanation for this fact.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29939
dc.identifier.doi10.1088/0264-9381/15/12/007
dc.identifier.issn0264-9381
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0264-9381/15/12/007
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.relatedurlhttp://arxiv-web2.library.cornell.edu/pdf/gr-qc/9805010.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59533
dc.issue.number12
dc.journal.titleClassical and quantum gravity
dc.language.isoeng
dc.page.final3775
dc.page.initial3763
dc.publisherIOP Publishing Ltd
dc.relation.projectIDPB94–0107
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordQuantum-gravity
dc.subject.keywordFermions
dc.subject.keywordUniverse
dc.subject.keywordOrigin
dc.subject.keywordState
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleThiemann transform for gravity with matter fields
dc.typejournal article
dc.volume.number15
dcterms.references[1] Thiemann T 1996 Class. Quantum Grav. 13 1383 [2] Ashtekar A 1996 Phys. Rev. D 53 2865 [3] Mena Marugán G A 1997 Geometric interpretation of Thiemann’s generalized Wick transform Preprint gr-qc/9705031, Grav. Comol. to appear [4] Ashtekar A 1991 Lectures on non-perturbative canonical gravity ed L Z Fang and R Ruffini (Singapore: World Scientific) [5] Ashtekar A, Romano J D and Tate R S 1989 Phys. Rev. D 40 2572 [6] Hawking S W 1979 The path-integral approach to quantum gravity General Relativity.– An Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press) [7] Gibbons G W, Hawking S W and Perry M J 1978 Nucl. Phys. B 138 141 [8] Mazur P O and Mottola E 1990 Nucl. Phys. B 341 187 [9] Greensite J 1993 Phys. Lett. B 300 34 Carlini A and Greensite J 1994 Phys. Rev. D 49 866 Ivashchuk V D 1997 Grav. Cosmol. 3 8 [10] See, for instance, Halliwell J J and Hawking S W 1985 Phys. Rev. D 31 1777 [11] See, for instance, D’Eath P D and Halliwell J J 1987 Phys. Rev. D 35 1100 [12] Jacobson T 1988 Class. Quantum Grav. 5 L143 [13] Faddeev L D and Slavnov A A 1980 Gauge Fields: Introduction to Quantum Theory (New York: Benjamin) [14] Hawking S W 1984 Nucl. Phys. B 239 257 [15] Mena Marugán G A 1997 Proc. Fifth Wigner Symp. (Singapore: World Scientific) to be published [16] Thiemann T 1998 Class. Quantum Grav. 15 839; 1998 Class. Quantum Grav. 15 875; 1998 Class. Quantum Grav. 15 1281
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay37preprint.pdf
Size:
179.74 KB
Format:
Adobe Portable Document Format

Collections