Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Increased vascular permeability measured with an albumin-binding magnetic resonance contrast agent is a surrogate marker of rupture-prone atherosclerotic plaque

Loading...
Thumbnail Image

Full text at PDC

Publication date

2016

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Heart Association
Citations
Google Scholar

Citation

Phinikaridou, Alkystis, et al. «Increased Vascular Permeability Measured With an Albumin-Binding Magnetic Resonance Contrast Agent Is a Surrogate Marker of Rupture-Prone Atherosclerotic Plaque». Circulation: Cardiovascular Imaging, vol. 9, n.o 12, diciembre de 2016, p. e004910. https://doi.org/10.1161/CIRCIMAGING.116.004910.

Abstract

Background: Compromised structural integrity of the endothelium and higher microvessel density increase vascular permeability. We investigated whether vascular permeability measured in vivo by magnetic resonance imaging using the albumin-binding contrast agent, gadofosveset, is a surrogate marker of rupture-prone atherosclerotic plaque in a rabbit model. Methods and results: New Zealand white rabbits (n=10) were rendered atherosclerotic by cholesterol-diet and endothelial denudation. Plaque rupture was triggered with Russell's viper venom and histamine. Animals were imaged pre-triggering, at 3 and 12 weeks, to quantify plaque area, vascular permeability, vasodilation, and stiffness and post-triggering to identify thrombus. Plaques identified on the pretrigger scans were classified as stable or rupture-prone based on the absence or presence of thrombus on the corresponding post-trigger magnetic resonance imaging, respectively. All rabbits had developed atherosclerosis, and 60% had ruptured plaques. Rupture-prone plaques had higher vessel wall relaxation rate (R1; 2.30±0.5 versus 1.86±0.3 s-1; P<0.001), measured 30 minutes after gadofosveset administration, and higher R1/plaque area ratio (0.70±0.06 versus 0.47±0.02, P= 0.01) compared with stable plaque at 12 weeks. Rupture-prone plaques had higher percent change in R1 between the 3 and 12 weeks compared with stable plaque (50.80±7.2% versus 14.22±2.2%; P<0.001). Immunohistochemistry revealed increased vessel wall albumin and microvessel density in diseased aortas and especially in ruptured plaque. Electron microscopy showed lack of structural integrity in both luminal and microvascular endothelium in diseased vessels. Functionally, the intrinsic vasodilation of the vessel wall decreased at 12 weeks compared with 3 weeks (18.60±1.0% versus 23.43±0.8%; P<0.001) and in rupture-prone compared with stable lesions (16.40±2.0% versus 21.63±1.2%; P<0.001). Arterial stiffness increased at 12 weeks compared with 3 weeks (5.00±0.1 versus 2.53±0.2 m/s; P<0.001) both in animals with stable and rupture-prone lesions. Conclusions: T1 mapping using an albumin-binding contrast agent (gadofosveset) could quantify the changes in vascular permeability associated with atherosclerosis progression and rupture-prone plaques.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections