Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An infinitesimal condition to smooth ropes

dc.contributor.authorGallego Rodrigo, Francisco Javier
dc.contributor.authorGonzález, Miguel
dc.contributor.authorPurnaprajna, Bangere P.
dc.date.accessioned2023-06-19T13:21:19Z
dc.date.available2023-06-19T13:21:19Z
dc.date.issued2013-01
dc.description.abstractIn this article we give a condition, which holds in a very general setting, to smooth a rope, of any dimension, embedded in projective space. As a consequence of this we prove that canonically embedded carpets satisfying mild geometric conditions can be smoothed. Our condition for smoothing a rope can be stated very transparently in terms of the cohomology class of a suitable first order infinitesimal deformation of a morphism I center dot associated to . In order to prove these results we find a sufficient condition, of independent interest, for a morphism I center dot from a smooth variety X to projective space, finite onto a smooth image, to be deformed to an embedding. Another application of this result on deformation of morphisms is the construction of smooth varieties in projective space with given invariants. We illustrate this by constructing canonically embedded surfaces with and deriving some interesting properties of their moduli spaces. The results of this article bear further evidence to the complexity of the moduli of surfaces of general type and its sharp contrast with the moduli of other objects such as curves or K3 surfaces.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipUCM
dc.description.sponsorshipGeneral Research Fund (GRF) of the University of Kansas
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19873
dc.identifier.doi10.1007/s13163-011-0083-6
dc.identifier.issn1139-1138
dc.identifier.officialurlhttp://link.springer.com/content/pdf/10.1007%2Fs13163-011-0083-6
dc.identifier.relatedurlhttp://www.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33255
dc.issue.number1
dc.journal.titleRevista matemática complutense
dc.language.isoeng
dc.page.final269
dc.page.initial253
dc.publisherSpringer
dc.relation.projectID910772
dc.relation.projectIDMTM2006-04785
dc.relation.projectIDMTM2009-06964
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordDeformation of morphisms
dc.subject.keywordEmbedding
dc.subject.keywordSmoothing
dc.subject.keywordRope
dc.subject.keywordCanonical surface
dc.subject.keywordGeneral type
dc.subject.keywordsurfaces
dc.subject.keyworddeformation
dc.subject.keywordmorphisms
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleAn infinitesimal condition to smooth ropes
dc.typejournal article
dc.volume.number26
dcterms.referencesArtin, M.: Algebraization of formal moduli I. In: Global Analysis: Papers in Honor of K. Kodaira. Princeton Math. Series, vol. 29, pp. 21–71 (1969) Ashikaga, T., Konno, K.: Algebraic surfaces of general type with c21 = 3pg − 7. Tohoku Math. J. 42, 517–536 (1990) Beauville, A., et al.: Géométrie des surfaces K3: modules et périodes. Astérisque 126 (1985) Gallego, F.J., Purnaprajna, B.P.: Degenerations of K3 surfaces in projective space. Trans. Am. Math. Soc. 349, 2477–2492 (1997) Gallego, F.J., González, M., Purnaprajna, B.P.: Deformation of finite morphisms and smoothing of ropes. Compos. Math. 144, 673–688 (2008) Gallego, F.J., González, M., Purnaprajna, B.P.: K3 double structures on Enriques surfaces and their smoothings. J. Pure Appl. Algebra 212, 981–993 (2008) Gallego, F.J., González, M., Purnaprajna, B.P.: Deformation of canonical morphisms and the moduli of surfaces of general type. Invent. Math. 182, 1–46 (2010) Gallego, F.J., González, M., Purnaprajna, B.P.: On the deformations of canonical double covers of minimal rational surfaces. Preprint arXiv:1005.5399 Gallego, F.J., González, M., Purnaprajna, B.P.: Smoothings of a non Cohen–Macaulay double structures on curves (in preparation) González, M.: Smoothing of ribbons over curves. J. Reine Angew. Math. 591, 201–235 (2006) Grothendieck, A.: EGA III, Étude cohomologique des faisceaux cohérents (première partie). Publ. Math. IHES, vol. 11 (1961) Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977) Horikawa, E.: On deformations of holomorphic maps. I. J. Math. Soc. Jpn. 25, 372–396 (1973) Hulek, K., Van de Ven, A.: The Horrocks-Mumford bundle and the Ferrand construction. Manuscr. Math. 50, 313–335 (1985) Kollar, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge University Press, Cambridge (1998) Matsumura, H.: Commutative Algebra. Benjamin/Cummings, Redwood City (1969) Sernesi, E.: Deformations of Algebraic Schemes. Grundlehren der mathematischen Wissenschaften, vol. 334. Springer, Berlin (2006)
dspace.entity.typePublication
relation.isAuthorOfPublication708fdd58-694b-4a58-8267-1013d3272036
relation.isAuthorOfPublication.latestForDiscovery708fdd58-694b-4a58-8267-1013d3272036

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gallego101.pdf
Size:
567 KB
Format:
Adobe Portable Document Format

Collections