Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Critical role of two-dimensional island-mediated growth on the formation of semiconductor heterointerfaces

dc.contributor.authorLuna, Esperanza
dc.contributor.authorGuzmán, Álvaro
dc.contributor.authorTrampert, Achim
dc.contributor.authorÁlvarez Silvar, Gabriel
dc.date.accessioned2023-06-20T03:31:14Z
dc.date.available2023-06-20T03:31:14Z
dc.date.issued2012-09-18
dc.description© American Physical Society
dc.description.abstractWe experimentally demonstrate a sigmoidal variation of the composition profile across semiconductor heterointerfaces. The wide range of material systems (III-arsenides, III-antimonides, III-V quaternary compounds, III-nitrides) exhibiting such a profile suggests a universal behavior. We show that sigmoidal profiles emerge from a simple model of cooperative growth mediated by two-dimensional island formation, wherein cooperative effects are described by a specific functional dependence of the sticking coefficient on the surface coverage. Experimental results confirm that, except in the very early stages, island growth prevails over nucleation as the mechanism governing the interface development and ultimately determines the sigmoidal shape of the chemical profile in these two-dimensional-grown layers. In agreement with our experimental findings, the model also predicts a minimum value of the interfacial width, with the minimum attainable value depending on the chemical identity of the species.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20351
dc.identifier.doi10.1103/PhysRevLett.109.126101
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://prl.aps.org/pdf/PRL/v109/i12/e126101
dc.identifier.relatedurlhttp://prl.aps.org
dc.identifier.relatedurlhttp://arxiv.org/abs/1206.6983
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43692
dc.issue.number12
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordChemisorption
dc.subject.keywordNanocrystals
dc.subject.keywordOxidation
dc.subject.keywordMechanism
dc.subject.keywordKinetics.
dc.subject.ucmFísica-Modelos matemáticos
dc.titleCritical role of two-dimensional island-mediated growth on the formation of semiconductor heterointerfaces
dc.typejournal article
dc.volume.number109
dcterms.references[1] M.J. Hytch, M.G. Walls, and J.P. Chevalier, Ultramicroscopy 83, 217 (2000). [2] O. Hulko, D.A. Thompson, and J.G. Simmons, IEEE J. Sel. Top. Quant. Electron. 14, 1104 (2008). [3] O. Hulko, D.A. Thompson, B.J. Robinson, and J.G. Simmons, J. Appl. Phys. 105, 073507 (2009). [4] E. Luna, F. Ishikawa, P.D. Batista, and A. Trampert, Appl. Phys. Lett. 92, 141913 (2008). [5] E. Luna, F. Ishikawa, B. Satpati, J. Rodriguez, E. Tournié, and A. Trampert, J. Crystal Growth 311, 1739 (2009). [6] E. Luna, B. Satpati, J.B. Rodriguez, A.N. Baranov, E. Tournié, and A. Trampert, Appl. Phys. Lett. 96, 021904 (2010). [7] M. Müller, B. Gault, M. Field, G.J. Sullivan, G.D.W. Smith, and C.R.M. Grovenor, Appl. Phys. Lett. 100, 083109 (2012). [8] The layers exhibit coherent interfaces and a structural interfacial roughness of ±1ML. [9] K.W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, 2nd ed. (John Wiley & Sons, Chichester, 2008). [10] Optimized growth conditions refer to 2D grown heterostructures with smooth and coherent interfaces. [11] For instance, L=1.6 ML for Al_0.3Ga_0.7As/GaAs grown at Ts = 580C; L = 1.3 ML for In_0.4Ga_0.6As/GaAs grown at Ts = 420C; whereas L = 1 ML for In_0.5Ga_0.5As/GaSb grown at Ts = 420C. Furthermore, in high-quality dilutenitride(In,Ga)(As,N)/GaAs QWs, L_In = 1.4 − 1.6ML and L_N = 1 − 1.3ML regardless of T_s = 375C or 420C,even if grown at different laboratories. [12] Y. Zhang, L. R. Manning, J. Falcone, O. Platt, and J. M. Manning, J. Biol. Chem. 278, 39565 (2003); H.W. Ducklow and S.M. Hill, Limnol. Oceanogr. 30, 239 (1985); F. Gugumus, Polym. Degrad. Stabil. 52, 159 (1996). [13] O.M. Becker and A. Ben-Shaul, Phys. Rev. Lett. 61, 2859 (1988). [14] O.M. Becker, J. Chem. Phys. 96, 5488 (1992). [15] T. Litz, T. Behr, D. Hommel, A. Waag, and G. Landwehr, J. Appl. Phys. 72, 3492 (1992). [16] P. Kisliuk, J. Phys. Chem. Solids 3, 95 (1957). [17] E.S. Hood, B.H. Toby, and W.H. Weinberg, Phys. Rev. Lett. 55, 2437 (1985). [18] J.W. Evans, Rev. Mod. Phys. 65, 1281 (1993). [19] Eden growth was introduced in M. Eden, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob. 4, 223 (1961) as a model for the formation of cell colonies in which each cluster grows following a simple geometrical rule: starting from an already existing single occupied lattice site or nucleation center, empty adjacent sites are occupied in each subsequent growth step; as a result of this mechanism Eden clusters have a compact structure. [20] T. Taliercio, A. Gassenq, E. Luna, A. Trampert, and E. Tournié, Appl. Phys. Lett. 96, 062109 (2010). [21] K. Mahalingam, K.G. Eyink, G.J. Brown, D.L. Dorsey, C.F. Kisielowski, and A. Thust, Appl. Phys. Lett. 88, 091904 (2006). [22] J.M. Chauveau, A. Trampert, K.H. Ploog, and E. Tournié, Appl. Phys. Lett. 84, 2503 (2004). [23] T.J. Prosa, P.H. Clifton, H. Zhong, A. Tyagi, R. Shivaraman, S.P. DenBaars, S. Nakamura, and J.S. Speck, Appl. Phys. Lett. 98, 191903 (2011). [24] P. Kratzer and M. Scheffler, Phys. Rev. Lett. 88, 036102 (2002). [25] M.A. Herman,W. Richter, and H. Sitter, Epitaxy: Physical Principles and Technical Implementation (Springer Verlag, Berlin, 2004). [26] M. Suemitsu, Y. Enta, Y. Miyanishi, and N. Miyamoto, Phys. Rev. Lett. 82, 2334 (1999). [27] S. Ohno, H. Kobayashi, F. Mitobe, T. Suzuki, K. Shudo, and M. Tanaka, Phys. Rev. B 77, 085319 (2008). [28] K. Biswas, N. Varghese, and C.N.R. Rao, Small 4, 649 (2008). [29] H. Zheng, R.K. Smith, Y. Jun, C. Kisielowski, U. Dahmen, and A.P. Alivisatos, Science 324, 1309 (2009). [30] B. Lim, H. Kobayashi, P. Camargo, L. Allard, J. Liu, and Y. Xia, Nano Res. 3, 180 (2010).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
alvarez01-.pdf
Size:
896.93 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
alvarez01preprint.pdf
Size:
391.69 KB
Format:
Adobe Portable Document Format

Collections