DCO2/PaCO2 correlation on high-frequency oscillatory ventilation combined with volume guarantee using increasing frequencies in an animal model

Citation
González-Pacheco N, Sánchez-Luna M, Arribas-Sánchez C, Santos-González M, Orden-Quinto C, Tendillo-Cortijo F. DCO2/PaCO2 correlation on high-frequency oscillatory ventilation combined with volume guarantee using increasing frequencies in an animal model. Eur J Pediatr. 2020 Mar;179(3):499-506. doi: 10.1007/s00431-019-03503-8. Epub 2019 Dec 10. PMID: 31823075.
Abstract
To examine the correlation DCO2/PaCO2 on high-frequency oscillatory ventilation (HFOV) combined with volume guarantee (VG) throughout increasing frequencies in two different respiratory conditions, physiological and low compliance. Neonatal animal model was used, before and after a bronchoalveolar lavage (BAL). HFOV combined with VG was used. The frequency was increased from 10 to 20 Hz, and high-frequency tidal volume (VThf) was gradually decreased maintaining a constant DCO2. Arterial partial pressure of carbon dioxide (PaCO2) was evaluated after each frequency and VThf change. Six 2-day-old piglets were studied. A linear decrease in PaCO2 was observed throughout increasing frequencies in both respiratory conditions while maintaining a constant DCO2, showing a significant difference between the initial PaCO2 (at 10 Hz) and the PaCO2 obtained at 18 and 20 Hz. A new DCO2 equation (corrected DCO2) was calculated in order to better define the correlation between DCO2 and the observed PaCO2.Conclusion: The correlation DCO2/PaCO2 throughout increasing frequencies is not linear, showing a greater CO2 elimination efficiency at higher frequencies, in spite of maintaining a constant DCO2. So, using frequencies close to the resonant frequency of the respiratory system on HFOV combined with VG, optimizes the efficiency of gas exchange.What is Known: • The efficacy of CO2removal during high-frequency oscillatory ventilation (HFOV), described as the diffusion coefficient of CO2(DCO2) is related to the square of the high-frequency tidal volume (VThf) and the frequency (f), expressed as DCO2= VThf2× f.What is New: • The correlation between DCO2and PaCO2throughout increasing frequencies is not linear, showing a greater CO2elimination efficiency at higher frequencies. So, using very high frequencies on HFOV combined with volume guarantee optimizes the efficiency of gas exchange allowing to minimize lung injury.
Research Projects
Organizational Units
Journal Issue
Description
Unesco subjects
Keywords
Collections