Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spatial Computing in Modular Spiking Neural Networks with a Robotic Embodiment

dc.contributor.authorLobov, Sergey A.
dc.contributor.authorMikhaylov, Alexey N.
dc.contributor.authorBerdnikova, Ekaterina S.
dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.authorKazantsev, Victor B.
dc.date.accessioned2023-06-22T12:45:59Z
dc.date.available2023-06-22T12:45:59Z
dc.date.issued2023
dc.description.abstractOne of the challenges in modern neuroscience is creating a brain-on-a-chip. Such a semiartificial device based on neural networks grown in vitro should interact with the environment when embodied in a robot. A crucial point in this endeavor is developing a neural network architecture capable of associative learning. This work proposes a mathematical model of a midscale modular spiking neural network (SNN) to study learning mechanisms within the brain-on-a-chip context. We show that besides spike-timing-dependent plasticity (STDP), synaptic and neuronal competitions are critical factors for successful learning. Moreover, the shortest pathway rule can implement the synaptic competition responsible for processing conditional stimuli coming from the environment. This solution is ready for testing in neuronal cultures. The neuronal competition can be implemented by lateral inhibition actuating over the SNN modulus responsible for unconditional responses. Empirical testing of this approach is challenging and requires the development of a technique for growing cultures with a given ratio of excitatory and inhibitory neurons. We test the modular SNN embedded in a mobile robot and show that it can establish the association between touch (unconditional) and ultrasonic (conditional) sensors. Then, the robot can avoid obstacles without hitting them, relying on ultrasonic sensors only.
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77265
dc.identifier.doi10.3390/math11010234
dc.identifier.issn2227-7390
dc.identifier.officialurlhttps://doi.org/10.3390/math11010234
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73152
dc.issue.number1
dc.journal.titleMathematics
dc.language.isoeng
dc.page.initial234
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51
dc.subject.cdu57
dc.subject.keywordSpiking neural networks
dc.subject.keywordAssociative learning
dc.subject.keywordBrain-on-a-chip
dc.subject.keywordNeurorobot
dc.subject.keywordNeuroanimat
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmBiología
dc.subject.unesco12 Matemáticas
dc.subject.unesco24 Ciencias de la Vida
dc.titleSpatial Computing in Modular Spiking Neural Networks with a Robotic Embodiment
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscoverya5728eb3-1e14-4d59-9d6f-d7aa78f88594

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
makarov_spatial.pdf
Size:
5.21 MB
Format:
Adobe Portable Document Format

Collections