Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Carrier Dynamics and Absorption Properties of Gold-Hyperdoped Germanium:Insight Into Tailoring Defect Energetics

dc.contributor.authorPastor Pastor, David
dc.contributor.authorDissanayake, Sashini Senali
dc.contributor.authorFerdous, Naheed
dc.contributor.authorGandhi, Hemi H.
dc.contributor.authorTran, Tuan T.
dc.contributor.authorWilliams, Jim S.
dc.contributor.authorAziz, Michael J.
dc.contributor.authorMazur, Eric
dc.contributor.authorErtekin, Elif
dc.contributor.authorSher, Meng-Ju
dc.date.accessioned2023-06-17T08:21:55Z
dc.date.available2023-06-17T08:21:55Z
dc.date.issued2021-06-23
dc.description.abstractHyperdoping germanium with gold is a potential method to produce room-temperature shortwavelength-infrared radiation (SWIR; 1.4–3.0 μm) photodetection. We investigate the charge carrier dynamics, light absorption, and structural properties of gold-hyperdoped germanium (Ge:Au) fabricated with varying ion implantation and nanosecond pulsed laser melting conditions. Time-resolved terahertz spectroscopy (TRTS) measurements show that Ge:Au carrier lifetime is significantly higher than that in previously studied hyperdoped silicon systems. Furthermore, we find that lattice composition, sub-bandgap optical absorption, and carrier dynamics depend greatly on hyperdoping conditions. We use density functional theory (DFT) to model dopant distribution, electronic band structure, and optical absorption. These simulations help explain experimentally observed differences in optical and optoelectronic behavior across different samples. DFT modeling reveals that substitutional dopant incorporation has the lowest formation energy and leads to deep energy levels. In contrast, interstitial or dopant-vacancy complex incorporation yields shallower energy levels that do not contribute to sub-band-gap light absorption and have a small effect on charge carrier lifetimes. These results suggest that it is promising to tailor dopant incorporation sites of Ge:Au for SWIR photodetection applications.
dc.description.abstractHyperdoping germanium with gold is a potential method to produce room-temperature shortwavelength-infrared radiation (SWIR; 1.4–3.0 μm) photodetection. We investigate the charge carrier dynamics, light absorption, and structural properties of gold-hyperdoped germanium (Ge:Au) fabricated with varying ion implantation and nanosecond pulsed laser melting conditions. Time-resolved terahertz spectroscopy (TRTS) measurements show that Ge:Au carrier lifetime is significantly higher than that in previously studied hyperdoped silicon systems. Furthermore, we find that lattice composition, sub-bandgap optical absorption, and carrier dynamics depend greatly on hyperdoping conditions. We use density functional theory (DFT) to model dopant distribution, electronic band structure, and optical absorption. These simulations help explain experimentally observed differences in optical and optoelectronic behavior across different samples. DFT modeling reveals that substitutional dopant incorporation has the lowest formation energy and leads to deep energy levels. In contrast, interstitial or dopant-vacancy complex incorporation yields shallower energy levels that do not contribute to sub-band-gap light absorption and have a small effect on charge carrier lifetimes. These results suggest that it is promising to tailor dopant incorporation sites of Ge:Au for SWIR photodetection applications
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid/FEDER
dc.description.sponsorshipDepartment of Defense (DoD)
dc.description.sponsorshipNational Defense Science and Engineering Graduate Fellowship (NDSEG) Program
dc.description.sponsorshipDirected Energy Processing Society Graduate Fellowship
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/70233
dc.identifier.issn2331-7019
dc.identifier.officialurlhttps://doi.org/10.1103/PhysRevApplied.15.064058
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6769
dc.issue.number064058
dc.journal.titlePhysical review applied
dc.language.isospa
dc.page.final9
dc.page.initial1
dc.publisherAmer Physical Soc
dc.relation.projectIDTEC2017-84378; RYC-2014-16936
dc.relation.projectIDMADRID-PV2 (P-2018/EMT-4308)
dc.relation.projectIDDGE 0946799
dc.relation.projectIDEX-2010-0662
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordImplantación iónica
dc.subject.keywordtiempo de vida de las cargas
dc.subject.keywordGermanio hiperdopado
dc.subject.keywordfundido laser de nanosegundos
dc.subject.keywordracocido láser
dc.subject.keywordIon implantation
dc.subject.keywordCarrier lifetime
dc.subject.keywordHyperdoped Germanium
dc.subject.keywordPulsed laser melting
dc.subject.keywordlaser annealing
dc.subject.ucmFísica (Física)
dc.subject.ucmElectrónica (Física)
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco22 Física
dc.subject.unesco2211 Física del Estado Sólido
dc.titleCarrier Dynamics and Absorption Properties of Gold-Hyperdoped Germanium:Insight Into Tailoring Defect Energetics
dc.title.alternativeCarrier Dynamics and Absorption Properties of Gold-Hyperdoped Germanium:Insight Into Tailoring Defect Energetics
dc.typejournal article
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublication0f0a0600-ce06-4d5b-acee-eb68dd4c9853
relation.isAuthorOfPublication.latestForDiscovery0f0a0600-ce06-4d5b-acee-eb68dd4c9853

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevApplied.15.064058.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format

Collections