Carrier Dynamics and Absorption Properties of Gold-Hyperdoped Germanium:Insight Into Tailoring Defect Energetics
dc.contributor.author | Pastor Pastor, David | |
dc.contributor.author | Dissanayake, Sashini Senali | |
dc.contributor.author | Ferdous, Naheed | |
dc.contributor.author | Gandhi, Hemi H. | |
dc.contributor.author | Tran, Tuan T. | |
dc.contributor.author | Williams, Jim S. | |
dc.contributor.author | Aziz, Michael J. | |
dc.contributor.author | Mazur, Eric | |
dc.contributor.author | Ertekin, Elif | |
dc.contributor.author | Sher, Meng-Ju | |
dc.date.accessioned | 2023-06-17T08:21:55Z | |
dc.date.available | 2023-06-17T08:21:55Z | |
dc.date.issued | 2021-06-23 | |
dc.description.abstract | Hyperdoping germanium with gold is a potential method to produce room-temperature shortwavelength-infrared radiation (SWIR; 1.4–3.0 μm) photodetection. We investigate the charge carrier dynamics, light absorption, and structural properties of gold-hyperdoped germanium (Ge:Au) fabricated with varying ion implantation and nanosecond pulsed laser melting conditions. Time-resolved terahertz spectroscopy (TRTS) measurements show that Ge:Au carrier lifetime is significantly higher than that in previously studied hyperdoped silicon systems. Furthermore, we find that lattice composition, sub-bandgap optical absorption, and carrier dynamics depend greatly on hyperdoping conditions. We use density functional theory (DFT) to model dopant distribution, electronic band structure, and optical absorption. These simulations help explain experimentally observed differences in optical and optoelectronic behavior across different samples. DFT modeling reveals that substitutional dopant incorporation has the lowest formation energy and leads to deep energy levels. In contrast, interstitial or dopant-vacancy complex incorporation yields shallower energy levels that do not contribute to sub-band-gap light absorption and have a small effect on charge carrier lifetimes. These results suggest that it is promising to tailor dopant incorporation sites of Ge:Au for SWIR photodetection applications. | |
dc.description.abstract | Hyperdoping germanium with gold is a potential method to produce room-temperature shortwavelength-infrared radiation (SWIR; 1.4–3.0 μm) photodetection. We investigate the charge carrier dynamics, light absorption, and structural properties of gold-hyperdoped germanium (Ge:Au) fabricated with varying ion implantation and nanosecond pulsed laser melting conditions. Time-resolved terahertz spectroscopy (TRTS) measurements show that Ge:Au carrier lifetime is significantly higher than that in previously studied hyperdoped silicon systems. Furthermore, we find that lattice composition, sub-bandgap optical absorption, and carrier dynamics depend greatly on hyperdoping conditions. We use density functional theory (DFT) to model dopant distribution, electronic band structure, and optical absorption. These simulations help explain experimentally observed differences in optical and optoelectronic behavior across different samples. DFT modeling reveals that substitutional dopant incorporation has the lowest formation energy and leads to deep energy levels. In contrast, interstitial or dopant-vacancy complex incorporation yields shallower energy levels that do not contribute to sub-band-gap light absorption and have a small effect on charge carrier lifetimes. These results suggest that it is promising to tailor dopant incorporation sites of Ge:Au for SWIR photodetection applications | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Comunidad de Madrid/FEDER | |
dc.description.sponsorship | Department of Defense (DoD) | |
dc.description.sponsorship | National Defense Science and Engineering Graduate Fellowship (NDSEG) Program | |
dc.description.sponsorship | Directed Energy Processing Society Graduate Fellowship | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/70233 | |
dc.identifier.issn | 2331-7019 | |
dc.identifier.officialurl | https://doi.org/10.1103/PhysRevApplied.15.064058 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/6769 | |
dc.issue.number | 064058 | |
dc.journal.title | Physical review applied | |
dc.language.iso | spa | |
dc.page.final | 9 | |
dc.page.initial | 1 | |
dc.publisher | Amer Physical Soc | |
dc.relation.projectID | TEC2017-84378; RYC-2014-16936 | |
dc.relation.projectID | MADRID-PV2 (P-2018/EMT-4308) | |
dc.relation.projectID | DGE 0946799 | |
dc.relation.projectID | EX-2010-0662 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Implantación iónica | |
dc.subject.keyword | tiempo de vida de las cargas | |
dc.subject.keyword | Germanio hiperdopado | |
dc.subject.keyword | fundido laser de nanosegundos | |
dc.subject.keyword | racocido láser | |
dc.subject.keyword | Ion implantation | |
dc.subject.keyword | Carrier lifetime | |
dc.subject.keyword | Hyperdoped Germanium | |
dc.subject.keyword | Pulsed laser melting | |
dc.subject.keyword | laser annealing | |
dc.subject.ucm | Física (Física) | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.ucm | Física de materiales | |
dc.subject.ucm | Física del estado sólido | |
dc.subject.unesco | 22 Física | |
dc.subject.unesco | 2211 Física del Estado Sólido | |
dc.title | Carrier Dynamics and Absorption Properties of Gold-Hyperdoped Germanium:Insight Into Tailoring Defect Energetics | |
dc.title.alternative | Carrier Dynamics and Absorption Properties of Gold-Hyperdoped Germanium:Insight Into Tailoring Defect Energetics | |
dc.type | journal article | |
dc.volume.number | 15 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0f0a0600-ce06-4d5b-acee-eb68dd4c9853 | |
relation.isAuthorOfPublication.latestForDiscovery | 0f0a0600-ce06-4d5b-acee-eb68dd4c9853 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- PhysRevApplied.15.064058.pdf
- Size:
- 1.17 MB
- Format:
- Adobe Portable Document Format