Two-dimensional electron gases at LaAIO_3/SrTiO_3 interfaces: orbital symmetry and hierarchy engineered by crystal orientation

dc.contributor.authorPesquera, D.
dc.contributor.authorScigaj, M.
dc.contributor.authorGargiani, P.
dc.contributor.authorBarla, A.
dc.contributor.authorHerrero-Martín, J.
dc.contributor.authorPellegrin, E.
dc.contributor.authorValvidares, S. M.
dc.contributor.authorGázquez Alabart, Jaume
dc.contributor.authorVarela Del Arco, María
dc.contributor.authorDix, N.
dc.contributor.authorFontcuberta Griñó, Josep
dc.contributor.authorSánchez Barrera, Florencio
dc.contributor.authorHerranz Casabona, Gervasi
dc.date.accessioned2023-06-19T13:30:41Z
dc.date.available2023-06-19T13:30:41Z
dc.date.issued2014-10-07
dc.description© 2014 American Physical Society. This work was supported by the Spanish Government through MAT2011-29269-C03, and NANOSELECT CSD2007-00041 projects and the Generalitat de Catalunya (2009 SGR 00376 project). J. G. acknowledges the Ramon y Cajal program (RYC-2012-11709). These experiments were performed at the Boreas beam line of the Synchrotron Light Facility ALBA with the collaboration of ALBA staff. Microscopy work was conducted in the STEM Group of the Oak Ridge National Laboratory (ORNL), and in the Laboratorio de Microscopías Avanzadas at the Instituto de Nanociencia de Aragón—Universidad de Zaragoza. Research at ORNL supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division (MV). Research atUCMsupported by the ERC Starting Investigator Award STEMOX 739239.
dc.description.abstractRecent findings show the emergence of two-dimensional electron gases (2DEGs) at LaAIO_3/SrTiO_3 interfaces along different orientations; yet details on band reconstructions have remained so far unknown. Via x-ray linear dichroism spectroscopy, we demonstrate that crystal symmetry imposes distinctive 2DEG orbital hierarchies on (001)-and (110)-oriented quantum wells, allowing selective occupancy of states of different symmetry. Such orientational tuning expands the possibilities for electronic engineering of 2DEGs and opens up enticing opportunities to understand the link between orbital symmetry and complex correlated states at LaAIO_3/SrTiO_3 quantum wells.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Government
dc.description.sponsorshipGeneralitat de Catalunya
dc.description.sponsorshipRamon y Cajal program
dc.description.sponsorshipU.S. Department of Energy (DOE)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29218
dc.identifier.doi10.1103/PhysRevLett.113.156802
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.156802
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33903
dc.issue.number15
dc.journal.titlePhysical review letters
dc.language.isoeng
dc.page.final1
dc.page.initial156802
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT2011-29269-C03
dc.relation.projectIDCSD2007-00041
dc.relation.projectID2009 SGR 00376
dc.relation.projectIDRYC-2012-11709
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordOrbital symmetries
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleTwo-dimensional electron gases at LaAIO_3/SrTiO_3 interfaces: orbital symmetry and hierarchy engineered by crystal orientation
dc.typejournal article
dc.volume.number113
dcterms.references[1] S.-H. Park, J. Appl. Phys. 91, 9904 (2002). [2] M. Feneberg and K. Thonke, J. Phys. Condens. Matter 19, 403201 (2007). [3] S.-H. Park and D. Ahn, Opt. Quantum Electron. 38, 935 (2006). [4] A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004). [5] A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature (London) 419, 378 (2002). [6] H.W. Jang et al., Science 331, 886 (2011). [7] J. Biscaras, N. Bergeal, A. Kushwaha, T. Wolf, A. Rastogi, R. C. Budhani, and J. Lesueur, Nat. Commun. 1, 89 (2010). [8] Y. Hotta, T. Susaki, and H. Y. Hwang, Phys. Rev. Lett. 99, 236805 (2007). [9] P. Perna et al., Appl. Phys. Lett. 97, 152111 (2010). [10] P. Moetakef, J. Zhang, A. Kozhanov, B. Jalan, R. Seshadri, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 98, 112110 (2011). [11] Y. Z. Chen et al., Nat. Commun. 4, 1371 (2013). [12] Lu Li, C. Richter, J. Mannhart, and R. C. Ashoori, Nat. Phys. 7, 762 (2011). [13] Ariando et al., Nat. Commun. 2, 188 (2011). [14] J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and K. A. Moler, Nat. Phys. 7, 767 (2011). [15] B. Kalisky, J. A. Bert, B. B. Klopfer, C. Bell, H. K. Sato, M. Hosoda, Y. Hikita, H. Y. Hwang, and K. A. Moler, Nat. Commun. 3, 922 (2012). [16] A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, Nature (London) 456, 624 (2008). [17] N. Reyren et al., Science 317, 1196 (2007). [18] C. Bell, S. Harashima, Y. Kozuka, M. Kim, B. G. Kim, Y. Hikita, and H. Y. Hwang, Phys. Rev. Lett. 103, 226802 (2009). [19] S. Caprara, J. Biscaras, N. Bergeal, D. Bucheli, S. Hurand, C. Feuillet-Palma, A. Rastogi, R. C. Budhani, J. Lesueur, and M. Grilli, Phys. Rev. B 88, 020504(R) (2013). [20] J. Biscaras, N. Bergeal, S. Hurand, C. Feuillet-Palma, A. Rastogi, R. C. Budhani, M. Grilli, S. Caprara, and J. Lesueur, Nat. Mater. 12, 542 (2013). [21] R. M. Fernandes, J. T. Haraldsen, P. Wolfle, and A. V. Balatsky, Phys. Rev. B 87, 014510 (2013). [22] A. Joshua, S. Pecker, J. Ruhman, E. Altman, and S. Ilani, Nat. Commun. 3, 1129 (2012). [23] N. Pavlenko, T. Kopp, E. Y. Tsymbal, G. A. Sawatzky, and J. Mannhart, Phys. Rev. B 85, 020407(R) (2012). [24] N. Pavlenko, T. Kopp, and J. Mannhart, Phys. Rev. B 88, 201104(R) (2013). [25] J.-S. Lee, Y.W. Xie, H. K. Sato, C. Bell, Y. Hikita, H. Y. Hwang, and C.-C. Kao, Nat. Mater. 12, 703 (2013). [26] G. Herranz, F. Sánchez, N. Dix, M. Scigaj, and J. Fontcuberta, Sci. Rep. 2, 758 (2012). [27] A. Annadi et al., Nat. Commun. 4, 1838 (2013). [28] G. Herranz, N. Bergeal, J. Lesueur, J. Gazquez, M. Scigaj, N. Dix, F. Sanchez, and J. Fontcuberta. arXiv:1305.2411. [29] M. Salluzzo et al., Phys. Rev. Lett. 102, 166804 (2009). [30] A. F. Santander-Syro et al., Nature (London) 469, 189 (2011). [31] S. M. Valvidares, M. Huijben, P. Yu, R. Ramesh, and J. B. Kortright, Phys. Rev. B 82, 235410 (2010). [32] P. Delugas, A. Filippetti, V. Fiorentini, D. I. Bilc, D. Fontaine, and P. Ghosez, Phys. Rev. Lett. 106, 166807 (2011). [33] F. Sánchez, C. Ocal, and J. Fontcuberta, Chem. Soc. Rev. 43, 2272 (2014). [34] M. Foerster, R. Bachelet, V. Laukhin, J. Fontcuberta, G. Herranz, and F. Sánchez, Appl. Phys. Lett. 100, 231607 (2012). [35] G. Herranz et al., Phys. Rev. Lett. 98, 216803 (2007). [36] P. D. Nellist and S. J. Pennycook, Ultramicroscopy 78, 111 (1999). [37] J. Stöhr, J. Electron Spectrosc. Relat. Phenom. 75, 253 (1995). [38] D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino, E. Magnano, F. Sánchez, and J. Fontcuberta, Nat. Commun. 3, 1189 (2012). [39] Z. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 111, 3933 (2014). [40] E. Stavitski and F. M. F. De Groot, Micron 41, 687 (2010); F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 41, 928 (1990); M. Matsubara, T. Uozumi, and A. Kotani, J. Synchrotron Radiat. 8, 393 (2001). [41] For the simulations, we used cubic crystal field parameter 10 Dq ¼ 2.0 eV, the charge transfer parameters were Δ ¼ 3 eV, Udd ¼ 4 eV, and Upd ¼ 6 eV, and Lorentzian broadenings were 0.06 eV (for L3 − t2g), 0.22 eV (for L3 − eg), 0.4 eV (for L2 − t2g), and 0.5 eV (for L2 − eg). The tetragonal field parameters, Ds and Dt, were varied to fit the experimental data and obtain the energy splittings as Δeg ¼ 4 Ds þ 5 Dt and Δt2g ¼ 3 Ds − 5 Dt. The parameter Ds ranged approximately from −10 to 10 meV and Dt from −1 to 1 meV. [42] S. Caprara, F. Peronaci, and M. Grilli, Phys. Rev. Lett. 109, 196401 (2012).
dspace.entity.typePublication
relation.isAuthorOfPublication63e453a5-31af-4eeb-9a5f-21c2edbbb733
relation.isAuthorOfPublication.latestForDiscovery63e453a5-31af-4eeb-9a5f-21c2edbbb733

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1793.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format

Collections