Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Importance of the phase and amplitude in the fractional Fourier domain

dc.contributor.authorAlieva Krasheninnikova, Tatiana
dc.contributor.authorCalvo Padilla, María Luisa
dc.date.accessioned2023-06-20T10:43:13Z
dc.date.available2023-06-20T10:43:13Z
dc.date.issued2003-03
dc.description© 2003 Optical Society of America. Financial assistance from the Spanish Ministry of Science and Technology (project TIC 2002-01846) is acknowledged. T. Alieva acknowledges the financial support of Secretaría de Estado de Educación y Universidades de España (SB2000-0166) (Spanish Ministry of Education, Culture, and Sports).
dc.description.abstractThe importance of the amplitude and phase in the fractional Fourier transform (FT) domain is analyzed on the basis of the rectangular signal and the real-world image. The quality of signal restoration from only the amplitude or from only the phase of its fractional FT by applying the inverse fractional FT is considered. It is shown that the signal reconstructed from the amplitude of the fractional FT usually reveals the main features of the original signal only for relatively low fractional orders. On the basis of phase information in the fractional FT domains, significant details of the signal can be obtained for nearly all fractional orders.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia y Tecnología, España
dc.description.sponsorshipSecretaría de Estado de Educación y Universidades de España
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte (MECD), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25603
dc.identifier.doi10.1364/JOSAA.20.000533
dc.identifier.issn0740-3232
dc.identifier.officialurlhttp://dx.doi.org/10.1364/JOSAA.20.000533
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51072
dc.issue.number3
dc.journal.titleJournal of the Optical Society of America A-Optics Image Science And Vision
dc.language.isoeng
dc.page.final541
dc.page.initial533
dc.publisherOptical Society of America
dc.relation.projectIDTIC 2002-01846
dc.relation.projectIDSB2000-0166
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordOptical Implementation
dc.subject.keywordTransform
dc.subject.keywordSignals
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleImportance of the phase and amplitude in the fractional Fourier domain
dc.typejournal article
dc.volume.number20
dcterms.references1. J. L. Horner and P. D. Gianino, “Phase-only matched filtering”, Appl. Opt. 23, 812–816 (1984). 2. A. Vanderlugt, Optical Signal Processing (Wiley, New York, 1992). 3. G. O. Reynolds, J. B. DeVelis, G. B. Parrent, and B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE Press, Bellingham, Wash., 1989). 4. D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Fractional correlation”, Appl. Opt. 34, 303–309 (1995). 5. D. Mendlovic, Y. Bitran, R. G. Dorsch, and A. Lohmann, “Optical fractional correlation: experimental results”, J. Opt. Soc. Am. A 12, 1665–1670 (1995). 6. J. García, D. Mendlovic, Z. Zalevsky, and A. Lohmann, “Space variant simultaneous detection of several objects using multiple anamorphic fractional Fourier transform filters”, Appl. Opt. 35, 3945–3952 (1996). 7. J. Garcia, R. G. Dorsch, A. W. Lohmann, C. Ferreira, and Z. Zalevsky, “Flexible optical implementation of fractional Fourier processors: application to correlation and filtering”, Opt. Commun. 133, 393–400 (1997). 8. O. Akay and G. F. Boudreaux-Bartels, “Fractional convolution and correlation via operator methods and an application to detection of linear FM signals”, IEEE Trans. Signal Process. 49, 979–993 (2001). 9. T. Alieva and M. L. Calvo, “Generalized fractional convolution”, in Perspectives in Modern Optics and Optical Instrumentation (Anita Publications, New Delhi, 2002), pp. 282–292. 10. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001). 11. A. Kozma and D. Kelly, “Spatial filtering for detection of signals submerged in noise”, Appl. Opt. 4, 387–392 (1965). 12. A. V. Oppenheim and J. S. Lim, “The importance of phase in signals”, Proc. IEEE 69, 529–541 (1981). 13. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device”, IBM J. Res. Dev. 13, 150–155 (1969). 14. A. W. Lohmann, D. Mendlovic, and G. Shabtay, “Significance of phase and amplitude in the Fourier domain”, J. Opt. Soc. Am. A 14, 2901–2904 (1997). 15. D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I”, J. Opt. Soc. Am. A 10, 1875–1881 (1993). 16. H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transformations and their optical implementation: II”, J. Opt. Soc. Am. A 10, 2522–2531 (1993). 17. L. B. Almeida, “The fractional Fourier transform and time-frequency representations”, IEEE Trans. Signal Process. 42, 3084–3091 (1994). 18. T. Alieva, M. L. Calvo, and M. J. Bastiaans, “Power filtering of n-order in the fractional Fourier domain”, J. Phys. A 35, 7779–7785 (2002). 19. M. Abramovich and I. A. Segun, Handbook of Mathematical Functions (Dover, New York, 1965). 20. H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform”, IEEE Trans. Signal Process. 44, 2141–2150 (1996).
dspace.entity.typePublication
relation.isAuthorOfPublicationf1512137-328a-4bb6-9714-45de778c1be4
relation.isAuthorOfPublicatione2846481-608d-43dd-a835-d70f73a4dd48
relation.isAuthorOfPublication.latestForDiscoverye2846481-608d-43dd-a835-d70f73a4dd48

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CalvoML61.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format

Collections