Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Genuine multipartite entanglement of quantum states in the multiple-copy scenario

dc.contributor.authorPalazuelos Cabezón, Carlos
dc.contributor.authorVicente, Julio I. de
dc.date.accessioned2023-06-22T10:57:31Z
dc.date.available2023-06-22T10:57:31Z
dc.date.issued2022-06-13
dc.description.abstractGenuine multipartite entanglement (GME) is considered a powerful form of entanglement since it corresponds to those states that are not biseparable, i.e. a mixture of partially separable states across different bipartitions of the parties. In this work we study this phenomenon in the multiple-copy regime, where many perfect copies of a given state can be produced and controlled. In this scenario the above definition leads to subtle intricacies as biseparable states can be GME-activatable, i.e. several copies of a biseparable state can display GME. We show that the set of GMEactivatable states admits a simple characterization: a state is GME-activatable if and only if it is not partially separable across one bipartition of the parties. This leads to the second question of whether there is a general upper bound in the number of copies that needs to be considered in order to observe the activation of GME, which we answer in the negative. In particular, by providing an explicit construction, we prove that for any number of parties and any number k 2 N there exist GME-activatable multipartite states of fixed (i.e. independent of k) local dimensions such that k copies of them remain biseparable.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74352
dc.identifier.doi10.22331/q-2022-06-13-735
dc.identifier.issn2521-327X
dc.identifier.officialurlhttps://doi.org/10.22331/q-2022-06-13-735
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71939
dc.journal.titleQuantum: the open journal for quantum science
dc.language.isoeng
dc.relation.projectIDPID2020- 113523GB-I00; n (grant CEX2019-000904-S funded by MCINN/AEI/10.13039/501100011033)
dc.relation.projectIDQUITEMAD-CM (S2018/TCS-4342)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51-73
dc.subject.keywordQuantum Physics
dc.subject.ucmFísica matemática
dc.titleGenuine multipartite entanglement of quantum states in the multiple-copy scenario
dc.typejournal article
dc.volume.number6
dcterms.references[1] V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photonics 5, 222 (2011). [2] G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014). [3] G. Murta, F. Grasselli, H. Kampermann, and D. Bruß, Adv. Quantum Technol. 3, 2000025 (2020). [4] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001). [5] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009). [6] N. Friis, G. Vitagliano, M. Malik, and M. Huber, Nat. Rev. Phys. 1, 72 (2019). [7] L. Gurvits, J. Comput. Syst. Sci. 69, 448 (2004). [8] W. Dür, G. Vidal, and J.I. Cirac, Phys. Rev. A 62, 062314 (2000). [9] F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys. Rev. A, 65, 052112 (2002). [10] E. Briand, J.-G. Luque, J.-Y. Thibon, F. Verstraete, J. Math. Phys. 45, 4855 (2004). [11] J. I. de Vicente, C. Spee, and B. Kraus, Phys. Rev. Lett. 111, 110502 (2013). [12] C. Spee, J. I. de Vicente, and B. Kraus, J. Math. Phys. 57, 052201 (2016). [13] D. Sauerwein, N. R. Wallach, G. Gour, and B. Kraus, Phys. Rev. X 8, 031020 (2018). [14] M. Seevinck and J. Uffink, Phys. Rev. A 65, 012107 (2001). [15] N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, Phys. Rev. X 8, 021012 (2018). [16] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Phys. Rev. A 85, 022321 (2012). [17] G. Tóth, Phys. Rev. A 85, 022322 (2012). [18] S. Das, S. Bäuml, M. Winczewski, and K. Horodecki, Phys. Rev. X 11, 041016 (2021). [19] M. Huber and M. Plesch, Phys. Rev. A 83, 062321 (2011). [20] G. Carrara, H. Kampermann, D. Bruß, and G. Murta, Phys. Rev. Research 3, 013264 (2021). [21] D. Cavalcanti, M. L. Almeida, V. Scarani, and A. Acin, Nat. Commun. 2, 184 (2011). [22] P. Contreras-Tejada, C. Palazuelos, and J. I. de Vicente, Phys. Rev. Lett. 126, 040501 (2021). [23] C. Palazuelos, Phys. Rev. Lett. 109, 190401 (2012). [24] G. Smith and J. Yard, Science 321, 1812 (2008). [25] M. Navascues, E.Wolfe, D. Rosset, and A. Pozas-Kerstjens, Phys. Rev. Lett. 125, 240505 (2020). [26] H. Yamasaki, S. Morelli, M. Miethlinger, J. Bavaresco, N. Friis, and M. Huber, Quantum 6, 695 (2022). [27] T. Kraft, C. Ritz, N. Brunner, M. Huber, and O. Gühne, Phys. Rev. Lett. 120, 060502 (2018). [28] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997). [29] S. Beigi and P. W. Shor, J. Math. Phys. 51,042202 (2010). [30] M. Horodecki and P Horodecki, Phys. Rev. A 59, 4206 (1999). [31] L. Gurvits and H. Barnum, Phys. Rev. A 66, 062311 (2002). [32] R. Schneider. Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2nd edition, 2013. [33] P. Contreras-Tejada, C. Palazuelos, and J. I. de Vicente, Phys. Rev. Lett. 128, 220501 (2022). [34] K. Azuma, S. Bäuml, T. Coopmans, D. Elkouss, and B. Li, AVS Quantum Sci. 3, 014101 (2021). [35] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, ACM SIGMETRICS Perform. Eval. Rev. 47, 27 (2019).
dspace.entity.typePublication
relation.isAuthorOfPublication09970d9e-6722-4f02-aac0-023cf9867638
relation.isAuthorOfPublication.latestForDiscovery09970d9e-6722-4f02-aac0-023cf9867638

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
palazuelos_genuine.pdf
Size:
437.65 KB
Format:
Adobe Portable Document Format

Collections