The Failure of Rolle's Theorem in Infinite-Dimensional Banach Spaces
Loading...
Download
Full text at PDC
Publication date
2001
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
We prove the following new characterization of Cp Lipschitz) smoothness in Banach spaces. An infinite-dimensional Banach space X has a Cp smooth (Lipschitz)
bump function if and only if it has another Cp smooth (Lipschitz) bump function f such that its derivative does not vanish at any point in the interior of the support of f (that is, f does not satisfy Rolle's theorem). Moreover, the support of this bump can be assumed to be a smooth starlike body. The ``twisted tube'' method we use in the proof is interesting in itself, as it provides other useful characterizations of Cp smoothness related to the existence of a certain kind of deleting diffeomorphisms, as well as to the failure of Brouwer's fixed point theorem even for smooth self-mappings of starlike bodies in all infinite-dimensional spaces.