Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Exploring reward strategies for wind turbine pitch control by reinforcement learning

dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-12-09T14:54:10Z
dc.date.available2024-12-09T14:54:10Z
dc.date.issued2020
dc.description.abstractIn this work, a pitch controller of a wind turbine (WT) inspired by reinforcement learning (RL) is designed and implemented. The control system consists of a state estimator, a reward strategy, a policy table, and a policy update algorithm. Novel reward strategies related to the energy deviation from the rated power are defined. They are designed to improve the efficiency of the WT. Two new categories of reward strategies are proposed: “only positive” (O-P) and “positive-negative” (P-N) rewards. The relationship of these categories with the exploration-exploitation dilemma, the use of ϵ-greedy methods and the learning convergence are also introduced and linked to the WT control problem. In addition, an extensive analysis of the influence of the different rewards in the controller performance and in the learning speed is carried out. The controller is compared with a proportional-integral-derivative (PID) regulator for the same small wind turbine, obtaining better results. The simulations show how the P-N rewards improve the performance of the controller, stabilize the output power around the rated power, and reduce the error over time.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSierra-García, J. E., & Santos, M. (2020). Exploring reward strategies for wind turbine pitch control by reinforcement learning. Applied Sciences, 10(21), 7462.
dc.identifier.doi10.3390/app10217462
dc.identifier.officialurlhttps://doi.org/10.3390/app10217462
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112247
dc.issue.number21
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.page.initial7462
dc.publisherMDPI
dc.relation.projectIDMCI/AEI/FEDER Project number RTI2018-094902-B-C21
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordIntelligent control
dc.subject.keywordPitch control
dc.subject.keywordWind turbines
dc.subject.keywordWind energy
dc.subject.keywordReinforcement learning
dc.subject.keywordReward strategies
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleExploring reward strategies for wind turbine pitch control by reinforcement learning
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-10-07462-v3.pdf
Size:
4.14 MB
Format:
Adobe Portable Document Format

Collections