Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hemispheric Asymmetries in the Quasibiennial Oscillation Signature on the Mid- to High-Latitude Circulation of the Stratosphere

dc.contributor.authorPeña Ortiz, C.
dc.contributor.authorGarcía Herrera, Ricardo Francisco
dc.contributor.authorRibera, P.
dc.contributor.authorCalvo Fernández, Natalia
dc.date.accessioned2023-06-20T10:43:05Z
dc.date.available2023-06-20T10:43:05Z
dc.date.issued2008
dc.description© 2008 New York Academy of Sciences. European Meteorology Society Annual Meeting (7º. 2007. El Escorial, Spain). European Conference on Applications of Meteorology (8º. 2007. El Escorial, Spain)
dc.description.abstractThe quasibiennial oscillation (QBO) dominates the variability of the equatorial stratosphere and also affects the circulation and temperature of the extratropical region. In this paper we review previous work showing that the mid- to high-latitude circulation is weaker (stronger) when QBO easterlies (westerlies) dominate in the low equatorial stratosphere. The accepted explanation for the extratropical QBO signature is based on the QBO modulation of upward propagating planetary Rossby waves. This mechanism is consistent with the strong seasonality observed in the extratropical QBO. The largest QBO signature in the northern extratropical stratosphere occurs during winter when the dominating westerly wind allows the penetration of planetary waves in the northern stratosphere. However, during the southern winter, planetary waves do not disrupt the southern stratospheric vortex and the largest QBO signature is found during the late spring (November). To further illustrate these mechanisms, we analyze the QBO signature on the mid- to high-latitude circulation of the stratosphere using data from the ERA-40 reanalysis. The extratropical signature in both hemispheres is evaluated as a function of the latitude-height structure of the zonal wind in the tropical region in order to determine how the extratropical response depends on the vertical phase structure of the tropical QBO. We also analyze the QBO impact on planetary wave activity in order to determine how this modulation can explain the observed extratropical QBO signal.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25590
dc.identifier.doi10.1196/annals.1446.007
dc.identifier.issn0077-8923
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51067
dc.journal.titleAnnals of the New York Academy of Sciences
dc.language.isoeng
dc.page.final49
dc.page.initial32
dc.publisherhttp://dx.doi.org/10.1196/annals.1446.007
dc.rights.accessRightsrestricted access
dc.subject.cdu52
dc.subject.keywordInterannual variability
dc.subject.keywordGeneral-circulation
dc.subject.keywordQBO
dc.subject.keywordReanalysis
dc.subject.keywordModel
dc.subject.keywordTroposphere
dc.subject.keywordOzone
dc.subject.keywordWaves
dc.subject.keywordSolar
dc.subject.keywordCycle
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleHemispheric Asymmetries in the Quasibiennial Oscillation Signature on the Mid- to High-Latitude Circulation of the Stratosphere
dc.typejournal article
dc.volume.number1146
dcterms.references1. Veryard, R.G. & R.A. Ebdon. 1961. Fluctuations in tropical stratospheric winds. Meteorol. Mag. 90: 125–143. 2. Reed, R.J., W.J. Campbell, L.A. Rasmussen & R.G. Rogers. 1961. Evidence of downward propagating annual wind reversal in the equatorial stratosphere. J. Geophys. Res. 66: 813–818. 3. Lindzen, R.S. & J.R. Holton. 1968. A theory of the quasi-biennial oscillation. J. Atmos. Sci. 25: 1095–1107. 4. Holton, J.R. & R.S. Lindzen. 1972. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29: 1076–1080. 5. Plumb, R.A. 1984. The quasi-biennial oscillation. Dynam. Middle Atmos. 217–251. 6. Giorgetta,M.A., E. Manzini, E.Roeckner, et al. 2006. Climatology and forcing of the quasi-biennial oscillation in the MAECAM5 model. J. Clim. 19: 3882–3901. 7. Dunkerton,T.J. 1997.The role of gravity waves in the quasibiennial oscillation. J. Geophys. Res. 102: 053–076. 8. Andrews,D.G., J.R.Holton & C.B. Leovy. 1987. Middle Atmosphere Dynamics. Academic Press. New York, 489. 9. Haynes, P.H. 1998. The latitudinal structure of the quasi-biennial oscillation. Q. J. R. Meteorol. Soc. 124: 2645–2670. 10. Baldwin, M.P., L.J. Gray, T.J. Dunkerton, et al. 2001. The quasi-biennial oscillation. Rev. Geophys. 39: 179–229. 11. Naujokat, B. 1986. An update of the observed quasibiennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci. 43: 1873–1877. 12. Pascoe, C.L., L.J. Gray & S.A. Crooks. 2005. The quasi-biennial oscillation: Analysis using ERA-40 data. J. Geophys. Res. 110: D08105. 13. Hitchman, M.H., C.B. Leovy, J.C. Gille, et al. 1987. Quasi-stationary asymmetric circulations in the equatorial lower mesosphere. J. Atmos. Sci. 44: 2219–2236. 14. O’Sullivan, D. & T.J. Dunkerton. 1997.The influence of the quasi-biennial oscillation on global constituent distributions. J. Geophys. Res. 102: 731–743. 15. Jones, D.B.A., H.R. Schneider & M.B. McElroy. 1998. Effects of the quasi-biennial oscillation on the zonally averaged transport of tracers. J. Geophys. Res. 103: 235–249. 16. Kinnersley, J.S. & K.K. Tung. 1999. Mechanisms for the extratropical QBO in circulation and ozone. J. Atmos. Sci. 56: 1942–1962. 17. Choi, W., H. Lee, W.B. Grant, et al. 2002. On the secondary meridional circulation associated with the quasi-biennial oscillation.Tellus series B-Chem. and Phys. Meteo. 54: 395–406. 18. Huesmann, A.S. & M.H. Hitchman. 2001. The stratospheric quasi-biennial oscillation in the NCEP reanalyses: climatological structures. J. Geophys. Res. 106: 11859–11874. 19. Ribera, P., D. Gallego, C. Peña Ortiz, et al. 2003. The stratospheric QBO signal in the NCEP reanalysis, 1958–2001. Geophys. Res. Lett. 30: 1691. 20. Kinnersley, J.S. 1999. On the seasonal asymmetry of the lower and middle latitude QBO circulation anomaly. J. Atmos. Sci. 56: 1942–1962. 21. Holton, J.R. & H.C. Tan. 1980. Influence of the equatorial quasi-biennial oscillation on the global circulation at 50 Mb. J. Atmos. Sci. 37: 2200–2208. 22. Baldwin, M.P. & T.J. Dunkerton. 1991. Quasi-biennial oscillation above 10Mb. Geophys. Res. Lett. 18: 1205–1208. 23. Baldwin, M.P. & T.J. Dunkerton 1998. Quasi-biennial modulation of the southern hemisphere stratospheric polar vortex. Geophys. Res. Lett. 25: 3343–3346. 24. Gray, L.J., E.F. Drysdale, T.J. Dunkerton & B.N. Lawrence. 2001. Model studies of the interanual variability of the northern-hemisphere stratospheric winter circulation: the role of the quasi-biennial oscillation. QJRMS 127.574: 1413–1432. 25. Calvo, N., M.A. Giorgetta & C. Peña Ortiz. 2007. Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in MAECHAM5 simulations. J. Geophys. Res. 112: D10124. 26. Andrews, D.G. 1987. The influence of atmospheric waves on the general circulation of the middle atmosphere. Phil. Trans. Roy. Soc. London A323: 693–705. 27. Tung, K. & R. Lindzen. 1979. A theory of stationary long waves. Part II: resonant Rossby waves in the presence of realistic vertical shears. Mon. Wea. Rev. 107: 735–750. 28. Hamilton, K. 1998. Effects of an imposed quasibiennial oscillation in a comprehensive troposphere-stratosphere-mesosphere general circulation model. J. Atmos. Sci. 5: 2393–2418. 29. Garcia, R.R. & S. Solomon. 1987. A possible relationship between interannual variability in Antarctic ozone and the quasi-biennial oscillation. Geophys. Res. Lett. 14: 848–851. 30. Angell, J.K. 1990. Influence of equatorial QBO and SST on polar total ozone, and the 1990 Antartic ozone hole. Geophys. Res. Lett. 17: 1559–1572. 31. Uppala, S.M., P.W. Källberg, A.J. Simmons, et al. 2005. The ERA-40 re-analysis. Quart. J. R. Meteorol. Soc. 131: 2961–3012. 32. Bengtsson, L., K.I. Hodges & S. Hagemann. 2004. Sensitivity of the ERA-40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations. Tellus 56A: 456–471. 33. Baldwin, M.P. & L.J. Gray. 2005. Tropical stratospheric winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data. Geophys. Res. Lett. 32: L09806. 34. Mann, M.E. & J. Park. 1999. Oscillatory spatiotemporal signal detection in climate studies: a multiple-taper spectral domain approach. Adv. Geophys. 41: 1–131. 35. Efron, B. 1990. More efficient bootstrap computations. J. Am. Stat. Assoc. 85: 79–89. 36. Ribera, P., C. Peña Ortiz & R.García Herrera. 2004. Detection of the secondary meridional circulation associated with the quasi biennial oscillation. J. Geophys. Res. 109: D18112. 37. Edmon, H.J., B.J. Hoskins & M.E. McIntyre. 1980. Eliassen-Palm cross-sections for the troposphere. J. Atmos. Sci. 37: 2600–2616. 38. Baldwin, M.P. & D. O’Sullivan. 1995. Stratospheric effects of ENSO-related tropospheric circulation anomalies. J. Clim. 4: 649–667. 39. Gray, L.J., S. Crooks, C. Pascoe, et al. 2004. Solar and QBO influences on the timing of stratospheric sudden warmings. J. Atmos. Sci. 61: 2777–2796. 40. Labitzke, K. 2005. On the solar cycle-QBO relationship: a summary. J. Atmos. Solar-Terr. Phys. 67: 45–54. 41. Gray, L.J., S.A. Crooks, M.A. Palmer, et al. 2006. A possible transfer mechanism for the 11-year solar cycle to the lower stratosphere. Space Sc. Rev. 1: 357–370.
dspace.entity.typePublication
relation.isAuthorOfPublication194b877d-c391-483e-9b29-31a99dff0a29
relation.isAuthorOfPublication3cfa985b-0ebd-44fb-b791-312638313455
relation.isAuthorOfPublication.latestForDiscovery3cfa985b-0ebd-44fb-b791-312638313455

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
calvofernandez13.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format

Collections