Action–angle variables, ladder operators and coherent states
dc.contributor.author | Campoamor Stursberg, Otto-Rudwig | |
dc.contributor.author | Gadella, M. | |
dc.contributor.author | Kuru, S | |
dc.contributor.author | Negro, J. | |
dc.date.accessioned | 2023-06-20T03:31:51Z | |
dc.date.available | 2023-06-20T03:31:51Z | |
dc.date.issued | 2012 | |
dc.description.abstract | This Letter is devoted to the building of coherent states from arguments based on classical action–angle variables. First, we show how these classical variables are associated to an algebraic structure in terms of Poisson brackets. In the quantum context these considerations are implemented by ladder type operators and a structure known as spectrum generating algebra. All this allows to generate coherent states and thereby the correspondence of classical–quantum properties by means of the aforementioned underlying structure. This approach is illustrated with the example of the one-dimensional Pöschl–Teller potential system. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) of Spain | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20717 | |
dc.identifier.doi | 10.1016/j.physleta.2012.06.027 | |
dc.identifier.issn | 0375-9601 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0375960112007657 | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/43737 | |
dc.issue.number | 37 | |
dc.journal.title | Physics Letters A | |
dc.language.iso | eng | |
dc.page.final | 2521 | |
dc.page.initial | 2515 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM2009-10751; MTM2010-18556; FIS2009-09002 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 530.145 | |
dc.subject.keyword | Coherent states | |
dc.subject.keyword | Action–angle variables | |
dc.subject.keyword | Ladder operators | |
dc.subject.keyword | Pöschl–Teller potential | |
dc.subject.ucm | Teoría de los quanta | |
dc.subject.unesco | 2210.23 Teoría Cuántica | |
dc.title | Action–angle variables, ladder operators and coherent states | |
dc.type | journal article | |
dc.volume.number | 376 | |
dcterms.references | A.M. Perelomov, Commun. Math. Phys. 26 (1972) 222. A.O. Barut, L. Girardello, Commun. Math. Phys. 21 (1971) 41. J.R. Klauder, B.-S. Skagerstam, Coherent States. Applications in Physics and Mathematical Physics, World Scientific, Singapore, 1985. K.T. Hecht, The Vector Coherent State Method and Its Application to Problems of Higher Symmetry, Springer-Verlag, Berlin, 1987. J.P. Gazeau, J.R. Klauder, J. Phys. A 32 (1999) 123. A.M. Perelomov, Generalized Coherent States and Their Applications, Springer-Verlag, Berlin, 1986. R.W. Robinett, Phys. Rep. 392 (2004) 1. H. Goldstein, C. Poole, J. Safko, Classical Mechanics, Addison–Wesley, San Francisco, 2002. S. Kuru, J. Negro, Ann. Phys. 323 (2008) 413. S. Kuru, J. Negro, Ann. Phys. 324 (2009) 2548. S. Cruz y Cruz, S. Kuru, J. Negro, Phys. Lett. A 372 (2008) 1391. S. Kuru, J. Negro, Phys. Lett. A 376 (2012) 260. I.Sh. Averbukh, N.F. Perelman, Phys. Lett. A 139 (1989) 449. D.L. Aronstein, C.R. Stroud, Phys. Rev. A 55 (1997) 4626. J.P. Antoine, J.P. Gazeau, J.R. Klauder, K.A. Penson, J. Math. Phys. 42 (2001) 2349. T. Shreecharan, P.K. Panigrahi, J. Banerji, Phys. Rev. A 69 (2004) 012102. D.J. Fernández, V. Hussin, O. Rosas-Ortiz, J. Phys. A 40 (2007) 6491. J.A. Calzada, S. Kuru, J. Negro, M.A. del Olmo, Ann. Phys. 327 (2012) 808 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 72801982-9f3c-4db0-b765-6e7b4aa2221b | |
relation.isAuthorOfPublication.latestForDiscovery | 72801982-9f3c-4db0-b765-6e7b4aa2221b |
Download
Original bundle
1 - 1 of 1