Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Intraseasonal Variability of the Zonal-Mean Extratropical Tropopause: The Role of Changes in Polar Vortex Strength and Upper-Troposphere Wave Breaking.

dc.contributor.authorBarroso Pellico, Jesús Ángel
dc.contributor.authorZurita Gotor, Pablo
dc.date.accessioned2023-06-18T06:51:44Z
dc.date.available2023-06-18T06:51:44Z
dc.date.issued2016-03
dc.description© 2015 American Meteorological Society. This work was supported by the COMETH project (Grant CGL2013-30641) of the Ministerio de Economía y Competitividad of Spain. We are grateful to two anonymous reviewers for their constructive comments.
dc.description.abstractA principal component analysis of the Northern Hemisphere extratropical zonal-mean tropopause variability at intraseasonal time scales is presented in this work. Wavy deformations of the tropopause dominate this variability and explain significantly more variance than changes in the extratropical-mean tropopause height. The first mode is well correlated with the zonal index. Analysis of the dynamical evolution of the modes shows that tropopause deformations are caused by anomalous wave breaking at the tropopause level occurring in a preexisting anomalous stratospheric polar vortex. Specifically, an intense (weak) polar vortex is associated with a rising (sinking) of the polar tropopause, while anomalous wave breaking in the midlatitudes produces a dipolar tropopause change that is consistent with the anomalous meridional eddy flux of quasigeostrophic potential vorticity. These two forcings operate on different time scales and can be separated when the data are filtered at high or low frequency. Baroclinic equilibration seems to play a small role in the extratropical internal tropopause variability and the impact of tropospheric and stratospheric dynamics is quantitatively similar. A similar analysis for the Southern Hemisphere extratropics displays the same qualitative behavior.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37190
dc.identifier.doi10.1175/JAS-D-15-0177.1
dc.identifier.issn0022-4928
dc.identifier.officialurlhttp://dx.doi.org/10.1175/JAS-D-15-0177.1
dc.identifier.relatedurlhttp://journals.ametsoc.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24431
dc.issue.number3
dc.journal.titleJournal of the atmospheric sciences
dc.language.isoeng
dc.page.final1399
dc.page.initial1383
dc.publisherAmerican Meteorological Society
dc.relation.projectIDCGL2013-30641
dc.relation.projectIDCOMETH (218935)
dc.rights.accessRightsopen access
dc.subject.cdu550.3
dc.subject.keywordTropopause
dc.subject.keywordAtm/Ocean Structure/ Phenomena
dc.subject.keywordPlanetary waves
dc.subject.keywordCirculation/ Dynamics
dc.subject.keywordWave breaking
dc.subject.keywordStratosphere-troposphere coupling
dc.subject.keywordPotential vorticity.
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.subject.ucmFísica atmosférica
dc.subject.ucmGeofísica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.subject.unesco2507 Geofísica
dc.titleIntraseasonal Variability of the Zonal-Mean Extratropical Tropopause: The Role of Changes in Polar Vortex Strength and Upper-Troposphere Wave Breaking.
dc.typejournal article
dc.volume.number73
dcterms.referencesAmbaum, M. H. P., and B. J. Hoskins, 2002: The NAO troposphere–stratosphere connection. J. Climate, 15, 1969–1978, doi:10.1175/1520-0442(2002)015<1969:TNTSC>2.0.CO;2. Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp. Appenzeller, C., J. R. Holton, and K. H. Rosenlof, 1996: Seasonal variation of mass transport across the tropopause. J. Geophys. Res., 101, 15 071–15 078, doi:10.1029/96JD00821. Bethan, S., G. Vaughan, and S. J. Reid, 1996: A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere. Quart. J. Roy. Meteor. Soc., 122, 929–944, doi:10.1002/qj.49712253207. Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67, 2582–2600, doi:10.1175/2010JAS3287.1. Bordi, I., A. Dell’Aquila, A. Speranza, and A. Sutera, 2004: On the mid-latitude tropopause height and the orographic–baroclinic adjustment theory. Tellus, 56, 278–286, doi:10.1111/j.1600-0870.2004.00065.x. Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990–2009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2. Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83–109, doi:10.1029/JZ066i001p00083. Davis, N. A., and T. Birner, 2013: Seasonal to multidecadal variability of the width of the tropical belt. J. Geophys. Res. Atmos., 118, 7773–7787, doi:10.1002/jgrd.50610. Dell’Aquila, A., P. M. Ruti, and A. Sutera, 2006: Effects of the baroclinic adjustment on the tropopause in the NCEP–NCAR reanalysis. Climate Dyn., 28, 325–332, doi:10.1007/s00382-006-0199-4. Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600–2616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2. Egger, J., 1995: Tropopause height in baroclinic channel flow. J. Atmos. Sci., 52, 2232–2241, doi:10.1175/1520-0469(1995)052<2232:THIBCF>2.0.CO;2. Feldstein, S. B., and S. Lee, 2014: Intraseasonal and interdecadal jet shifts in the Northern Hemisphere: The role of warm pool tropical convection and sea ice. J. Climate, 27, 6497–6518, doi:10.1175/JCLI-D-14-00057.1. Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412–417, doi:10.1175/1520-0469(1982)039<0412:OTHOTT>2.0.CO;2. Hoinka, K. P., 1998: Statistics of the global tropopause pressure. Mon. Wea. Rev., 126, 3303–3325, doi:10.1175/1520-0493(1998)126<3303:SOTGTP>2.0.CO;2. Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403–439, doi:10.1029/95RG02097. Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, doi:10.1002/qj.49711147002. Juckes, M., 1994: Quasigeostrophic dynamics of the tropopause. J. Atmos. Sci., 51, 2756–2768, doi:10.1175/1520-0469(1994)051<2756:QDOTT>2.0.CO;2. Juckes, M., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci., 57, 3050–3057, doi:10.1175/1520-0469(2000)057<3050:TSSOTM>2.0.CO;2. Kodera, K., Y. Kuroda, and S. Pawson, 2000: Stratospheric sudden warmings and slowly propagating zonal-mean zonal wind anomalies. J. Geophys. Res., 105, 12 351–12 359, doi:10.1029/2000JD900095. Limpasuvan, V., D. W. J. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 2584–2596, doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2. Lindzen, R. S., 1993: Baroclinic neutrality and the tropopause. J. Atmos. Sci., 50, 1148–1151, doi:10.1175/1520-0469(1993)050<1148:BNATT>2.0.CO;2. Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 3312–3327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2. Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 1212–1227, doi:10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2. North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982a: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2. North, G. R., F. J. Moeng, T. L. Bell, and R. F. Cahalan, 1982b: The latitude dependence of the variance of zonally averaged quantities. Mon. Wea. Rev., 110, 319–326, doi:10.1175/1520-0493(1982)110<0319:TLDOTV>2.0.CO;2. Reed, R. J., 1955: A study of a characteristic type of upper level frontogenesis. J. Meteor., 12, 226–237, doi:10.1175/1520-0469(1955)012<0226:ASOACT>2.0.CO;2. Reichler, T., M. Dameris, and R. Sausen, 2003: Determining the tropopause height from gridded data. Geophys. Res. Lett., 30, 2042, doi:10.1029/2003GL018240. Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 1317–1340, doi:10.1175/1520-0469(2004)061<1317:TTATTS>2.0.CO;2. Seidel, D. J., and W. J. Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data J. Geophys. Res., 111, D21101, doi:10.1029/2006JD007363. Shepherd, T. G., 2002: Issues in stratosphere–troposphere coupling. J. Meteor. Soc. Japan, 80, 769–792, doi:10.2151/jmsj.80.769. Son, S., S. Lee, and S. B. Feldstein, 2007: Intraseasonal variability of the zonal-mean extratropical tropopause height. J. Atmos. Sci., 64, 608–620, doi:10.1175/JAS3855.1. Song, Y., and N. Nakamura, 2000: Eady instability of isolated baroclinic jets with meridionally varying tropopause height. J. Atmos. Sci., 57, 46–65, doi:10.1175/1520-0469(2000)057<0046:EIOIBJ>2.0.CO;2. Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2. Thuburn, J., and G. C. Craig, 1997: GCM tests of theories for the height of the tropopause. J. Atmos. Sci., 54, 869–882, doi:10.1175/1520-0469(1997)054<0869:GTOTFT>2.0.CO;2. Thuburn, J., and G. Craig, 2000: Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci., 57, 17–28, doi:10.1175/1520-0469(2000)057<0017:SIOTHT>2.0.CO;2. Wittman, M. H., A. J. Charlton, and L. M. Polvani, 2005: On the meridional structure of annular modes. J. Climate, 18, 2119–2122, doi:10.1175/JCLI3394.1. WMO, 1957: Definition of the tropopause. WMO Bull., 6, 136. Wong, S., and W.-C. Wang, 2003: Tropical–extratropical connection in interannual variation of the tropopause: Comparison between NCEP/NCAR reanalysis and an atmospheric general circulation model simulation. J. Geophys. Res., 108, 4043, doi:10.1029/2001JD002016. Wu, Y., and O. Pauluis, 2014: Midlatitude tropopause and low-level moisture. J. Atmos. Sci., 71, 1187–1200, doi:10.1175/JAS-D-13-0154.1. Zängl, G., and V. Wirth, 2002: Synoptic-scale variability of the polar and subpolar tropopause: Data analysis and idealized PV inversions. Quart. J. Roy. Meteor. Soc., 128, 2301–2315, doi:10.1256/qj.01.76. Zurita-Gotor, P., and G. K. Vallis, 2011: Dynamics of midlatitude tropopause height in an idealized model. J. Atmos. Sci., 68, 823–838, doi:10.1175/2010JAS3631.1. Zurita-Gotor, P., and G. K. Vallis, 2013: Determination of extratropical tropopause height in an idealized gray radiation model. J. Atmos. Sci., 70, 2272–2292, doi:10.1175/JAS-D-12-0209.1.
dspace.entity.typePublication
relation.isAuthorOfPublicationbd71e5e1-d247-49a1-be1d-3915a3ef5347
relation.isAuthorOfPublication.latestForDiscoverybd71e5e1-d247-49a1-be1d-3915a3ef5347

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zurita 02 libre+embargo 09_ 2016.pdf
Size:
4.06 MB
Format:
Adobe Portable Document Format

Collections