Intersection of parabolic subgroups in even Artin groups of FC-type

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Cambridge University Press
Google Scholar
Research Projects
Organizational Units
Journal Issue
We show that the intersection of parabolic subgroups of an even finitely generated FC-type Artin group is again a parabolic subgroup.
CRUE-CSIC (Acuerdos Transformativos 2022)
Unesco subjects
1. Y. Antolín and A. Minasyan, Tits alternatives for graph products, J. die reine und angew. Math. 2015(704) (2015), 55–83. 2. R. Blasco-Garcia, C. Martinez-Perez and L. Paris, Poly-freeness of even artin groups of FC-type, Groups Geom. Dyn. 13(1) (2019), 309–325. 3. M. Blufstein, Parabolic subgroups of two-dimensional Artin groups and systolic-byfunction complexes. e-print arxiv:2108.04929v1. 4. M. Cumplido, V. Gebhardt, J. González-Meneses and B. Wiest, On parabolic subgroups of Artin–Tits groups of spherical type, Adv. Math. 352 (2019), 572–610. 5. M. Cumplido, A. Martin and N. Vaskou, Parabolic subgroups of large-type Artin groups. e-print arXiv:2012.02693v2. 6. Wa. Dicks and M. J. Dunwoody, Groups acting on graphs. Cambridge Studies in Advanced Mathematics, Volume 17 (Cambridge University Press, Cambridge, 1989), pp. xvi+283. 7. A. J. Duncan, I. V. Kazachkov and V. N. Remeslennikov, Parabolic and quasiparabolic subgroups of free partially commutative groups, J. Algebra 318(2) (2007), 918–932. 8. T. Haettel, Lattices, injective metrics and the K(π, 1) conjecture e-print arXiv:2109.07891. 9. H. Van der Lek, The homotopy type of complex hyperplane complements. PhD thesis, Katholieke Universiteit te Nijmegen (1983). 10. Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory. Reprint of the 1977 edition. Classics in Mathematics (Springer-Verlag, Berlin, 2001). p. xiv+339. 11. P. Möller, L. Paris and O. Varghese, On parabolic subgroups of Artin groups. e-print arXiv:2201.13044. 12. R. Morris-Wright, Parabolic subgroups in FC-type Artin groups, J. Pure Appl. Algebra 225(1) (2021), 106468.