Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Universal knots

dc.book.titleKnot Theory and Manifolds
dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.editorRolfsen, Dale
dc.date.accessioned2023-06-21T02:43:00Z
dc.date.available2023-06-21T02:43:00Z
dc.date.issued1985
dc.descriptionProceedings of a Conference held in Vancouver, Canada, June 2–4, 1983
dc.description.abstractThis paper contains detailed proofs of the results in the announcement "Universal knots'' [the authors, Bull. Amer. Math. Soc. (N.S.) 8 (1983), 449–450;]. The authors exhibit a knot K that is universal, i.e. every closed, orientable 3-manifold M can be represented as a covering of S3 branched over K, thereby giving an affirmative answer to a question of Thurston. The idea is to start with a 3-fold covering M→S3 branched over a knot and to change it to a covering M→S3 branched over a certain link L4 of four (unknotted) components. This shows that L4 is universal. Then a covering S3→S3 that is branched over a certain link L2 of two components with L4 in the preimage of L2, and a covering S3→S3 that is branched over K with L2 in the preimage of K, are constructed. This shows that L2 and K are universal. The knot K is rather complicated. In a later paper [Topology 24 (1985), no. 4, 499–504;] the authors show that the "figure eight'' knot is universal.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22072
dc.identifier.doi10.1007/BFb0075011
dc.identifier.isbn978-3-540-15680-2
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007/BFb0075011
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/65468
dc.issue.number1144
dc.page.final59
dc.page.initial25
dc.page.total163
dc.publication.placeBerlin
dc.publisherSpringe
dc.relation.ispartofseriesLecture Notes in Mathematics
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.162.8
dc.subject.keyworduniversal knot
dc.subject.keyworduniversal links
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleUniversal knots
dc.typebook part
dcterms.referencesW. Thurston, Universal links (preprint). H. Hilden, M. Lozano, and J. Montesinos; Universal Knots; Bull. Amer. Math. Soc. (8) (1983), 449–450. L. P. Neuwirth; Knot Groups; Annals of Math. Studies Series 56, Princeton University Press, Princeton, N.J. J. Montesinos, Una nola a un teorema de Alexander, Rev. Mat. Hisp.-Amer. 32 (1972), 167–87. D. Rolfsen, Knots and Links, Publish or Perish Press, Inc., Berkeley, California. H. Hilden, Three-fold branched coverings of S3, Amer. J. Math. 98 (1976), 989–997. J. Montesinos, Three-manifolds as 3-fold branched covers of S3, Quarterly J. Math. Oxford (2), 27 (1976), 85–94. U. Hirsch, "Über offene Abbildungen auf die 3-Sphäre", Math. Z 140 (1974), 203–230. C. McA. Gordon and W. Heil, Simply connected branched coverings of S3, Proceedings of the Amer. Math. Soc. (35) (1972), 287–288. R. H. Fox, Coverings spaces with singularities, "Algebraic Geometry and Topology", A symposium in honour of S. Lefschetz. Princeton, 1957.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download