Universal knots
dc.book.title | Knot Theory and Manifolds | |
dc.contributor.author | Hilden, Hugh Michael | |
dc.contributor.author | Lozano Imízcoz, María Teresa | |
dc.contributor.author | Montesinos Amilibia, José María | |
dc.contributor.editor | Rolfsen, Dale | |
dc.date.accessioned | 2023-06-21T02:43:00Z | |
dc.date.available | 2023-06-21T02:43:00Z | |
dc.date.issued | 1985 | |
dc.description | Proceedings of a Conference held in Vancouver, Canada, June 2–4, 1983 | |
dc.description.abstract | This paper contains detailed proofs of the results in the announcement "Universal knots'' [the authors, Bull. Amer. Math. Soc. (N.S.) 8 (1983), 449–450;]. The authors exhibit a knot K that is universal, i.e. every closed, orientable 3-manifold M can be represented as a covering of S3 branched over K, thereby giving an affirmative answer to a question of Thurston. The idea is to start with a 3-fold covering M→S3 branched over a knot and to change it to a covering M→S3 branched over a certain link L4 of four (unknotted) components. This shows that L4 is universal. Then a covering S3→S3 that is branched over a certain link L2 of two components with L4 in the preimage of L2, and a covering S3→S3 that is branched over K with L2 in the preimage of K, are constructed. This shows that L2 and K are universal. The knot K is rather complicated. In a later paper [Topology 24 (1985), no. 4, 499–504;] the authors show that the "figure eight'' knot is universal. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22072 | |
dc.identifier.doi | 10.1007/BFb0075011 | |
dc.identifier.isbn | 978-3-540-15680-2 | |
dc.identifier.officialurl | http://link.springer.com/chapter/10.1007/BFb0075011 | |
dc.identifier.relatedurl | http://link.springer.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/65468 | |
dc.issue.number | 1144 | |
dc.page.final | 59 | |
dc.page.initial | 25 | |
dc.page.total | 163 | |
dc.publication.place | Berlin | |
dc.publisher | Springe | |
dc.relation.ispartofseries | Lecture Notes in Mathematics | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 515.162.8 | |
dc.subject.keyword | universal knot | |
dc.subject.keyword | universal links | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Universal knots | |
dc.type | book part | |
dcterms.references | W. Thurston, Universal links (preprint). H. Hilden, M. Lozano, and J. Montesinos; Universal Knots; Bull. Amer. Math. Soc. (8) (1983), 449–450. L. P. Neuwirth; Knot Groups; Annals of Math. Studies Series 56, Princeton University Press, Princeton, N.J. J. Montesinos, Una nola a un teorema de Alexander, Rev. Mat. Hisp.-Amer. 32 (1972), 167–87. D. Rolfsen, Knots and Links, Publish or Perish Press, Inc., Berkeley, California. H. Hilden, Three-fold branched coverings of S3, Amer. J. Math. 98 (1976), 989–997. J. Montesinos, Three-manifolds as 3-fold branched covers of S3, Quarterly J. Math. Oxford (2), 27 (1976), 85–94. U. Hirsch, "Über offene Abbildungen auf die 3-Sphäre", Math. Z 140 (1974), 203–230. C. McA. Gordon and W. Heil, Simply connected branched coverings of S3, Proceedings of the Amer. Math. Soc. (35) (1972), 287–288. R. H. Fox, Coverings spaces with singularities, "Algebraic Geometry and Topology", A symposium in honour of S. Lefschetz. Princeton, 1957. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |