Matrix biorthogonal polynomials: Eigenvalue problems and non-Abelian discrete Painleve equations A Riemann-Hilbert problem perspective

dc.contributor.authorBranquinho, Amilcar
dc.contributor.authorFoulquié Moreno, Ana
dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-17T08:56:03Z
dc.date.available2023-06-17T08:56:03Z
dc.date.issued2021-02-15
dc.description© 2021 Academic Press Inc Elsevier Science. Acknowledges Centre for Mathematics of the University of Coimbra (Portuguese Government through FCT/MCTES) within project UIDB/00324/2020.; Acknowledges Center for Research and Development in Mathematics and Applications from University of Aveiro (Portuguese Government through FCT/MCTES) within project UIDB/04106/2020.; Acknowledges economical support from the Spanish Ministerio de Economia y Competitividadresearch project [MTM201565888-C4-2-P], Ortogonalidad, teoria de la aproximacion y aplicaciones en fisica matematicaand Spanish Agencia Estatal de Investigacionresearch project [PGC2018-096504-B-C33], Ortogonalidad y Aproximacion: Teoria y Aplicaciones en Fisica Matematica.
dc.description.abstractIn this paper we use the Riemann-Hilbert problem, with jumps supported on appropriate curves in the complex plane, for matrix biorthogonal polynomials and apply it to find Sylvester systems of differential equations for the orthogonal polynomials and its second kind functions as well. For this aim, Sylvester type differential Pearson equations for the matrix of weights are shown to be instrumental. Several applications are given, in order of increasing complexity. First, a general discussion of non-Abelian Hermite biorthogonal polynomials on the real line, understood as those whose matrix of weights is a solution of a Sylvester type Pearson equation with coefficients first degree matrix polynomials, is given. All of these are applied to the discussion of possible scenarios leading to eigenvalue problems for second order linear differential operators with matrix eigenvalues. Nonlinear matrix difference equations are discussed next. Firstly, for the general Hermite situation a general non linear relation (non trivial because of the non commutativity features of the setting) for the recursion coefficients is gotten. In the next case of higher difficulty, degree two polynomials are allowed in the Pearson equation, but the discussion is simplified by considering only a left Pearson equation. In the case, the support of the measure is on an appropriate branch of a hyperbola. The recursion coefficients are shown to fulfill a non-Abelian extension of the alternate discrete PainleveI equation. Finally, a discussion is given for the case of degree three polynomials as coefficients in the left Pearson equation characterizing the matrix of weights. However, for simplicity only odd polynomials are allowed. In this case, a new and more general matrix extension of the discrete Painleve I equation is found. (c) 2020 Elsevier Inc. All rights reserved.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipCenter for Mathematics of the University of Coimbra (Portuguese Government through FCT/MCTES)
dc.description.sponsorshipCenter for Research and Development in Mathematics and Applications from University of Aveiro (Portuguese Government through FCT/MCTES)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63254
dc.identifier.doi10.1016/j.jmaa.2020.124605
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.jmaa.2020.124605
dc.identifier.relatedurlhttps://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7565
dc.issue.number2
dc.journal.titleJournal of mathematical analysis and applications
dc.language.isoeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.projectID(MTM201565888-C4-2-P; PGC2018-096504-B-C33)
dc.relation.projectIDUIDB/00324/2020
dc.relation.projectIDUIDB/04106/2020
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordValued orthogonal polynomials
dc.subject.keywordDifferential equations
dc.subject.keywordRecurrence coefficients
dc.subject.keywordLaurent polynomials
dc.subject.keywordUnit circle
dc.subject.keywordAsymptotics
dc.subject.keywordModels
dc.subject.keywordFormulas
dc.subject.keywordExtensions
dc.subject.keywordRespect.
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleMatrix biorthogonal polynomials: Eigenvalue problems and non-Abelian discrete Painleve equations A Riemann-Hilbert problem perspective
dc.typejournal article
dc.volume.number494
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas75preprint.pdf
Size:
499.13 KB
Format:
Adobe Portable Document Format

Collections