Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Can We Foresee Landscape Interest? Maximum Entropy Applied to Social Media Photographs: A Case Study in Madrid

dc.contributor.authorMarine, Nicolas
dc.contributor.authorArnaiz Schmitz, Cecilia
dc.contributor.authorSantos Cid, Luis
dc.contributor.authorSchmitz García, María Fe
dc.date.accessioned2023-06-22T12:27:06Z
dc.date.available2023-06-22T12:27:06Z
dc.date.issued2022-05-10
dc.description.abstractCultural Ecosystem Services (CES) are undervalued and poorly understood compared to other types of ecosystem services. The sociocultural preferences of the different actors who enjoy a landscape are intangible aspects of a complex evaluation. Landscape photographs available on social media have opened up the possibility of quantifying landscape values and ecosystem services that were previously difficult to measure. Thus, a new research methodology has been developed based on the spatial distribution of geotagged photographs that, based on probabilistic models, allows us to estimate the potential of the landscape to provide CES. This study tests the effectiveness of predictive models from MaxEnt, a software based on a machine learning technique called the maximum entropy approach, as tools for land management and for detecting CES hot spots. From a sample of photographs obtained from the Panoramio network, taken between 2007 and 2008 in the Lozoya Valley in Madrid (Central Spain), we have developed a predictive model of the future and compared it with the photographs available on the social network between 2009 and 2015. The results highlight a low correspondence between the prediction of the supply of CES and its real demand, which indicates that MaxEnt is not a sufficiently useful predictive tool in complex and changing landscapes such as the one studied here.en
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipFondo Europeo de Desarrollo Regional
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75109
dc.identifier.citationMarine, Nicolas, et al. «Can We Foresee Landscape Interest? Maximum Entropy Applied to Social Media Photographs: A Case Study in Madrid». Land, vol. 11, n.o 5, mayo de 2022, p. 715. https://doi.org/10.3390/land11050715.
dc.identifier.doi10.3390/land11050715
dc.identifier.issn2073-445X
dc.identifier.officialurlhttps://doi.org/10.3390/land11050715
dc.identifier.relatedurlhttps://www.mdpi.com/2073-445X/11/5/715/htm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72508
dc.issue.number5
dc.journal.titleLand
dc.language.isoeng
dc.page.final715-13
dc.page.initial715-1
dc.publisherMPDI
dc.relation.projectIDLABPA-CM (H2019/HUM-5692)
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu574(460.27)
dc.subject.cdu719
dc.subject.keywordCultural ecosystem services
dc.subject.keywordSocial media
dc.subject.keywordGeotagged photographs
dc.subject.keywordMaximum entropy models
dc.subject.keywordMaxEnt
dc.subject.ucmComunicación audiovisual
dc.subject.ucmFotografía
dc.subject.ucmEcología (Biología)
dc.subject.unesco6203.08 Fotografía
dc.subject.unesco2401.06 Ecología Animal
dc.subject.unesco2417.13 Ecología Vegetal
dc.subject.unesco2410.05 Ecología Humana
dc.titleCan We Foresee Landscape Interest? Maximum Entropy Applied to Social Media Photographs: A Case Study in Madrid
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublication101d4e52-e8be-4a01-9116-7368065e373e
relation.isAuthorOfPublicationd51b0c26-29e8-43e4-baca-458ae836d1da
relation.isAuthorOfPublication.latestForDiscovery101d4e52-e8be-4a01-9116-7368065e373e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
land-11-00715.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format

Collections