The weak summability dominion of a sequence S of the Hilbert space in relation with the set of linear bounded operators
dc.contributor.author | Martín Peinador, Elena | |
dc.date.accessioned | 2023-06-21T02:05:56Z | |
dc.date.available | 2023-06-21T02:05:56Z | |
dc.date.issued | 1981 | |
dc.description.abstract | Let H be a separable, real Hilbert space, L(H) the Banach space of all bounded linear operators on H. For a given sequence (xn)n∈N⊆H with xn≠0 for all n∈N let C(xn):={T∈L(H):∑n∈NTxn<∞} and M(xn):={x∈H:∑ n∈N|(xn,x)|<∞}. The author studies injective (i.e. one-to-one, not necessarily invertible) operators, finite rank operators, and completely continuous operators in C(xn). The following results are shown: (1) C(xn) contains an injective operator if and only if M (xn)=H. (2) C(xn) is contained in the set of all finite rank operators on H if and only if the linear subspace M (xn)⊆H is of finite dimension. (3) C(xn) contains operators which are not completely continuous if and only if M(xn) contains an infinite-dimensional closed linear subspace of H. Finally it is proved that whenever all operators in C(xn) are completely continuous, they must necessarily be Hilbert-Schmidt operators. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21933 | |
dc.identifier.issn | 0185-0644 | |
dc.identifier.officialurl | http://paginas.matem.unam.mx/publicaciones/index.php/2012-03-30-17-01-12/2012-04-13-15-06-06/2012-05-07-15-51-42 | |
dc.identifier.relatedurl | http://paginas.matem.unam.mx | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64845 | |
dc.issue.number | 2 | |
dc.journal.title | Anales del Instituto de Matemáticas | |
dc.language.iso | eng | |
dc.page.final | 162 | |
dc.page.initial | 149 | |
dc.publisher | Universidad Nacional Autónoma de México | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.1 | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Weak summability dominion | |
dc.subject.keyword | absolute summability | |
dc.subject.keyword | injective operators | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | The weak summability dominion of a sequence S of the Hilbert space in relation with the set of linear bounded operators | |
dc.type | journal article | |
dc.volume.number | 21 | |
dcterms.references | Fillmore, P. A., Williams, J. P. “On Operator Ranges”. Advances in Math., v. 7, nº. 3 (1971), 254-281 Julia, G. “Introduction Mathématiques aux Théories Quantiques”. Ed. Gauthier-Villars (1955) Martín Peinador, E. “On the set of bounded linear operators transforming a certain sequence of a Hilbert space into an absolutely summable one”. Acts of the Colloquium on Topology (Budapest 1978) Plans, A. “Zerlegung von Folgen in Hilbertraum in Heterogonalsystem”. Archiv der Mathematik, v. X (1959) Schatten, R. “Norm ideals of completely continuous operators”. Springer-Verlag (1970) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0074400c-5caa-43fa-9c45-61c4b6f02093 | |
relation.isAuthorOfPublication.latestForDiscovery | 0074400c-5caa-43fa-9c45-61c4b6f02093 |
Download
Original bundle
1 - 1 of 1