Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The weak summability dominion of a sequence S of the Hilbert space in relation with the set of linear bounded operators

dc.contributor.authorMartín Peinador, Elena
dc.date.accessioned2023-06-21T02:05:56Z
dc.date.available2023-06-21T02:05:56Z
dc.date.issued1981
dc.description.abstractLet H be a separable, real Hilbert space, L(H) the Banach space of all bounded linear operators on H. For a given sequence (xn)n∈N⊆H with xn≠0 for all n∈N let C(xn):={T∈L(H):∑n∈NTxn<∞} and M(xn):={x∈H:∑ n∈N|(xn,x)|<∞}. The author studies injective (i.e. one-to-one, not necessarily invertible) operators, finite rank operators, and completely continuous operators in C(xn). The following results are shown: (1) C(xn) contains an injective operator if and only if M (xn)=H. (2) C(xn) is contained in the set of all finite rank operators on H if and only if the linear subspace M (xn)⊆H is of finite dimension. (3) C(xn) contains operators which are not completely continuous if and only if M(xn) contains an infinite-dimensional closed linear subspace of H. Finally it is proved that whenever all operators in C(xn) are completely continuous, they must necessarily be Hilbert-Schmidt operators.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21933
dc.identifier.issn0185-0644
dc.identifier.officialurlhttp://paginas.matem.unam.mx/publicaciones/index.php/2012-03-30-17-01-12/2012-04-13-15-06-06/2012-05-07-15-51-42
dc.identifier.relatedurlhttp://paginas.matem.unam.mx
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64845
dc.issue.number2
dc.journal.titleAnales del Instituto de Matemáticas
dc.language.isoeng
dc.page.final162
dc.page.initial149
dc.publisherUniversidad Nacional Autónoma de México
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.cdu517.98
dc.subject.keywordWeak summability dominion
dc.subject.keywordabsolute summability
dc.subject.keywordinjective operators
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleThe weak summability dominion of a sequence S of the Hilbert space in relation with the set of linear bounded operators
dc.typejournal article
dc.volume.number21
dcterms.referencesFillmore, P. A., Williams, J. P. “On Operator Ranges”. Advances in Math., v. 7, nº. 3 (1971), 254-281 Julia, G. “Introduction Mathématiques aux Théories Quantiques”. Ed. Gauthier-Villars (1955) Martín Peinador, E. “On the set of bounded linear operators transforming a certain sequence of a Hilbert space into an absolutely summable one”. Acts of the Colloquium on Topology (Budapest 1978) Plans, A. “Zerlegung von Folgen in Hilbertraum in Heterogonalsystem”. Archiv der Mathematik, v. X (1959) Schatten, R. “Norm ideals of completely continuous operators”. Springer-Verlag (1970)
dspace.entity.typePublication
relation.isAuthorOfPublication0074400c-5caa-43fa-9c45-61c4b6f02093
relation.isAuthorOfPublication.latestForDiscovery0074400c-5caa-43fa-9c45-61c4b6f02093

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MPeinador113.pdf
Size:
3 MB
Format:
Adobe Portable Document Format

Collections