Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Boundary effects on the nonequilibrium structure factor of fluids below the Rayleigh-Benard instability

dc.contributor.authorOrtiz De Zárate Leira, José María
dc.contributor.authorSengers, Jan V.
dc.date.accessioned2023-06-20T19:09:58Z
dc.date.available2023-06-20T19:09:58Z
dc.date.issued2002-09
dc.description©2002 The American Physical Society. The authors are indebted to G. Ahlers and D. S. Cannell for some valuable comments. The research at the University of Maryland was supported by the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences of the U.S. Department of Energy under Grant No. DE-FG-02-95ER14509. J.M.O.Z. acknowledges the hospitality of the Institute for Physical Science and Technology, University of Maryland, where part of the manuscript was prepared.
dc.description.abstractWe consider a horizontal fluid layer between two rigid boundaries, maintained in a stationary thermal nonequilibrium state below the convective Rayleigh-Benard instability. We derive an explicit expression for the nonequilibrium structure factor in a first-order Galerkin approximation valid for negative and positive Rayleigh numbers R up to the critical Rayleigh number R(c) associated with the appearance of convection. The results obtained for rigid boundaries by the Galerkin-approximation method are compared with exact results previously derived for the case of free boundaries. The nonequilibrium structure factor exhibits a maximum as a function of the wave number q of the fluctuations. This maximum is associated with a crossover from a q(-4) dependence for larger q to a q(2) dependence for small q. This maximum is present at both negative and positive R, becomes pronounced at positive R and diverges as R approaches the critical value R(c).
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipOffice of Basic Energy Sciences of the U.S. Department of Energy
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27379
dc.identifier.doi10.1103/PhysRevE.66.036305
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.66.036305
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59337
dc.issue.number3
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDDE-FG-02-95ER14509
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordStationary Heat-Flux
dc.subject.keywordConvective Instability
dc.subject.keywordTemperature-Gradient
dc.subject.keywordThermal-Equilibrium
dc.subject.keywordLight-Scattering
dc.subject.keywordSteady-State
dc.subject.keywordHydrodynamic Fluctuations
dc.subject.keywordBrillouin-Scattering
dc.subject.keywordDiffusion-Processes
dc.subject.keywordGiant Fluctuations
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleBoundary effects on the nonequilibrium structure factor of fluids below the Rayleigh-Benard instability
dc.typejournal article
dc.volume.number66
dcterms.references[1] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 215 (1994). [2] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 995 (1982). [3] D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 (1982). [4] R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 39, 285 (1985). [5] R. Schmitz, Phys. Rep. 171, 1 (1988). [6] B. M. Law and J. V. Sengers, J. Stat. Phys. 57, 531 (1989). [7] P. N. Segrè and J. V. Sengers, Physica A 198, 46 (1993). [8] P. N. Segrè, R. Schmitz, and J. V. Sengers, Physica A 195, 31 (1993). [9] B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976). [10] B. M. Law, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Phys. Rev. A 41, 816 (1990). [11] P. N. Segrè, R. W. Gammon, J. V. Sengers, and B. M. Law, Phys. Rev. A 45, 714 (1992). [12] W. B. Li, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Physica A 204, 399 (1994). [13] W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998). [14] A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 (1996). [15] A. Vailati and M. Giglio, Prog. Colloid Polym. Sci. 104, 76 (1997). [16] A. S. Tremblay, M. Arai, and E. D. Siggia, Phys. Rev. A 23, 1451 (1981). [17] L. S. García Colín and R. M. Velasco, Phys. Rev. A 26, 2187 (1982). [18] R. Schmitz and E. G. D. Cohen, Phys. Rev. A 35, 2602 (1987). [19] D. Beysens, Y. Gabarros, and G. Zalczer, Phys. Rev. Lett. 45, 403 (1980). [20] H. Kiefte, M. J. Clouter, and R. Penney, Phys. Rev. B 30, 4017 (1984). [21] R. N. Suave and A. R. B. de Castro, Phys. Rev. B 53, 5330 (1996). [22] J. B. Swift and P. C. Hohenberg, Phys. Rev. A 15, 319 (1977). [23] T. R. Kirkpatrick and E. G. D. Cohen, J. Stat. Phys. 33, 639 (1983). [24] R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 40, 431 (1985). [25] H. van Beijeren and E. G. D. Cohen, J. Stat. Phys. 53, 77 (1988). [26] P. C. Hohenberg and J. B. Swift, Phys. Rev. A 46, 4773 (1992). [27] J. M. Ortiz de Zárate, R. Pérez Cordón, and J. V. Sengers, Physica A 291, 113 (2001). [28] J. M. Ortiz de Zárate and L. Muñoz Redondo, Eur. Phys. J. B 21, 135 (2001). [29] J. M. Ortiz de Zárate and J. V. Sengers, Physica A 300, 25 (2001). [30] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961). [31] V. Zaitsev and M. Shliomis, Zh. Eksp. Teor. Fiz. 59, 1583 (1970) [Sov. Phys. JETP 32, 866 (1971)]. [32] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993). [33] P. Manneville, Dissipative Structures and Weak Turbulence (Academic Press, San Diego, 1990). [34] D. J. Tritton, Physical Fluid Dynamics, 2nd ed. (Oxford University Press, Oxford, 1988). [35] J. García Ojalvo and J. M. Sancho, Noise in Spatially Extended Systems (Springer, New York, 1999). [36] K. Staliunis, Phys. Rev. E 64, 066129 (2001). [37] J. V. Sengers and J. M. Ortiz de Zárate, in Thermal Nonequilibrium Phenomena in Fluid Mixtures, edited by W. Köhler and S. Wiegand (Springer, Berlin, 2002), p. 121. [38] J. V. Sengers and J. M. Ortiz de Zárate, Rev. Mex. Fis. (to be published). [39] M.Wu, G. Ahlers, and D. S. Cannell, Phys. Rev. Lett. 75, 1743 (1995). [40] J. R. deBruyn, E. Bodenschatz, S. W. Morris, S. P. Trainoff, Y. Hu, D. S. Cannell, and G. Ahlers, Rev. Sci. Instrum. 67, 2043 (1996). [41] E. Bodenschatz, W. Pesch, and G. Ahlers, Annu. Rev. Fluid Mech. 32, 709 (2000). [42] A. Vailati and M. Giglio, Nature (London) 390, 262 (1997). [43] D. Brogioli and A. Vailati, and M. Giglio, Phys. Rev. E 61, R1 (2000). [44] S. P. Trainoff and D. S. Cannell, Phys. Fluids 14, 1340 (2002). [45] D. Brogioli, A. Vailati, and M. Giglio, J. Phys.: Condens. Matter 12, A39 (2000). [46] J. Westried, Y. Pomeau, M. Dubois, C. Normand, and P. Bergae, J. Phys. (Paris) 39, 725 (1978). [47] M. C. Cross, Phys. Fluids 23, 1727 (1980). [48] M. A. Domínguez Lerma, G. Ahlers, and D. S. Cannell, Phys. Fluids 27, 856 (1984). [49] C. Normand, Y. Pomeau, and M. G. Velarde, Rev. Mod. Phys. 49, 581 (1977). [50] R. Graham, Phys. Rev. A 10, 1762 (1974). [51] R. Graham and H. Pleiner, Phys. Fluids 18, 130 (1975). [52] M. A. Scherer, G. Ahlers, F. Hörner, and I. Rehberg, Phys. Rev. Lett. 85, 3754 (2000). [53] J. Oh and G. Ahlers (private communication). [54] J. García Ojalvo, A. Hernández Machado, and J. M. Sancho, Phys. Rev. Lett. 71, 1542 (1993).
dspace.entity.typePublication
relation.isAuthorOfPublicationd2b809b1-3ba2-407e-add2-8b8251e306ba
relation.isAuthorOfPublication.latestForDiscoveryd2b809b1-3ba2-407e-add2-8b8251e306ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ortiz30libre.pdf
Size:
195.1 KB
Format:
Adobe Portable Document Format

Collections