Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A multi-criteria decision support model for restaurant selection based on users' demand level: the case of dianping.com

dc.contributor.authorShu, Ziwei
dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorSánchez-Montañés, Manuel
dc.contributor.authorPortela García-Miguel, Javier
dc.date.accessioned2025-01-10T13:33:03Z
dc.date.available2025-01-10T13:33:03Z
dc.date.issued2024-01-17
dc.description.abstractThe Internet, by offering a variety of information sources such as online reviews, aids people in selecting restaurants. However, it also prolongs their decision-making process due to the need to integrate information across multiple criteria. Existing decision support models for choosing satisfactory restaurants overlook users' varying demand levels for each aspect of the restaurant, making the process less efficient. This paper aims to develop a multi-criteria decision support model for users to efficiently and accurately rank and select restaurants based on their demand level for various restaurant aspects. The 2-tuple linguistic ordered weighted averaging (2LOWA) aggregation operator is applied for the first time to aggregate user ratings, generating linguistic ratings that mirror the diverse levels of user demand for restaurant service, food, and environment. The importance weights (IW) method is introduced to calculate linguistic weights, thereby obtaining customized 2T-SFE composite scores under various user demand scenarios. The proposed model's applicability is demonstrated using a dataset comprising over 3.7 million reviews sourced from Dianping.com. The results show multiple personalized restaurant rankings with more linguistically understandable composite scores, enabling users to efficiently choose a suitable restaurant based on their preferences and requirements. Moreover, a list of restaurants satisfying most users with different demand levels can be generated by assessing their frequency of appearance in the top 10 restaurants across over 340 scenarios established by the proposed model. This contributes to offering more reliable and comprehensive restaurant recommendations and rankings, ultimately increasing customer satisfaction in the selection process.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid and Banco Santander
dc.description.sponsorshipFondo Europeo de Desarrollo Regional (FEDER)
dc.description.sponsorshipJapan Society for the Promotion of Science
dc.description.statuspub
dc.identifier.citationShu, Z., Carrasco, R. A., Sánchez-Montañés, M., & García-Miguel, J. P. (2024). A Multi-Criteria Decision Support Model for Restaurant Selection Based on Users’ Demand Level: The Case of Dianping.com. Information Processing & Management, 61(3), 103650.
dc.identifier.doi10.1016/j.ipm.2024.103650
dc.identifier.officialurlhttps://doi.org/10.1016/j.ipm.2024.103650
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0306457324000104?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/113741
dc.issue.number3
dc.journal.titleInformation Processing & Management
dc.language.isoeng
dc.page.final24
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDCT58/21-CT59/21
dc.relation.projectIDPID2019-103880RB-I00
dc.relation.projectIDPID2021-127946OB-I00
dc.relation.projectIDPID2021-122347NB-I00
dc.relation.projectIDPID2022-139297OB-I00
dc.relation.projectIDPID2021-122347NB-I00
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu519.8
dc.subject.cdu004.6
dc.subject.cdu519.226
dc.subject.cdu658.8
dc.subject.keywordOrdered weighted averaging aggregation operator
dc.subject.keywordPersonalized restaurant ranking
dc.subject.keyword2-tuple linguistic model
dc.subject.keywordOnline reviews
dc.subject.keywordMulti-criteria decision-making
dc.subject.ucmInvestigación Comercial
dc.subject.ucmInvestigación operativa (Estadística)
dc.subject.ucmEstadística
dc.subject.unesco1209.04 Teoría y Proceso de decisión
dc.subject.unesco1209.03 Análisis de Datos
dc.subject.unesco1209 Estadística
dc.titleA multi-criteria decision support model for restaurant selection based on users' demand level: the case of dianping.com
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number61
dspace.entity.typePublication
relation.isAuthorOfPublication0e904bac-aeb9-4021-a28d-d21856ac0c5b
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication44f935e8-9acf-4613-ab4d-e007edda7540
relation.isAuthorOfPublication.latestForDiscovery0e904bac-aeb9-4021-a28d-d21856ac0c5b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
the_case_of_dianping.pdf
Size:
3.7 MB
Format:
Adobe Portable Document Format

Collections