Review and new data on the surface properties of palygorskite: A comparative study

Loading...
Thumbnail Image
Full text at PDC
Publication date

2021

Authors
Súarez Barrios, Mercedes
Morales, Juan
Lorenzo, Adrián
García Vicente, Andrea
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Citation
Abstract
Palygorskite is a mineral used in a wide number of industrial sectors. Currently, there are hundreds of studies in which palygorskite is a part of different nanocomposites and bionanocomposites. The surface properties are essential for these applications, and in this work, an in-depth revision of these properties is done, showing that the high variability found cannot be explained only by the number of impurities or by differences in the analysis conditions. To further deepen the knowledge of the surface properties of palygorskite and palygorskitic clays, a comparative study of a wide group of high purity samples is also performed, and new data on these surface properties are provided with the determination of the specific surface area (SSA), micropore surface area (SSAμp), micropore volume (Vμp), external surface area (SSAEx), and mean equivalent pore diameter. Both the bibliographic data and new data show that SSA varies from a few tens of m2g−1 to almost 300 m2g−1, and the microporosity and external surface proportions also vary greatly. The experimental data obtained show that 1) ordinary soft vacuum conditions produce structural folding, which limits the accessibility to the inner part of the structural tunnels; 2) microporosity is related to the intra- and inter-fibre microporosity, depending first on the fibre size, because the shorter the fibre, the higher the partial accessibility to the entrance of the channels; 3) the crystal chemistry of the samples also influences the SSA because the Mg-rich terms, which have higher content of sepiolite polysome proportions in their structure as well as wider and more accessible intracrystalline channels than palygorskite polysomes.
Research Projects
Organizational Units
Journal Issue
Description
Unesco subjects
Keywords
Collections