Lignin as a High-Value Bioaditive in 3D-DLP Printable Acrylic Resins and Polyaniline Conductive Composite
Loading...
Official URL
Full text at PDC
Publication date
2022
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Citation
Arias Ferreiro, G., Lasagabaster Latorre, A., Ares Pernas, A. I., et al. «Lignin as a High-Value Bioaditive in 3D-DLP Printable Acrylic Resins and Polyaniline Conductive Composite». Polymers, vol. 14, n.o 19, octubre de 2022, p. 4164. DOI.org (Crossref), https://doi.org/10.3390/polym14194164.
Abstract
With increasing environmental awareness, lignin will play a key role in the transition from the traditional materials industry towards sustainability and Industry 4.0, boosting the development of functional eco-friendly composites for future electronic devices. In this work, a detailed study of the effect of unmodified lignin on 3D printed light-curable acrylic composites was performed up to 4 wt.%. Lignin ratios below 3 wt.% could be easily and reproducibly printed on a digital light processing (DLP) printer, maintaining the flexibility and thermal stability of the pristine resin. These low lignin contents lead to 3D printed composites with smoother surfaces, improved hardness (Shore A increase ~5%), and higher wettability (contact angles decrease ~19.5%). Finally, 1 wt.% lignin was added into 3D printed acrylic resins containing 5 wt.% p-toluensulfonic doped polyaniline (pTSA-PANI). The lignin/pTSA-PANI/acrylic composite showed a clear improvement in the dispersion of the conductive filler, reducing the average surface roughness (Ra) by 61% and increasing the electrical conductivity by an order of magnitude (up to 10−6 S cm−1) compared to lignin free PANI composites. Thus, incorporating organosolv lignin from wood industry wastes as raw material into 3D printed photocurable resins represents a simple, low-cost potential application for the design of novel high-valued, bio-based products.