Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Machine learning in corporate credit rating assessment using the expanded audit report

dc.contributor.authorMuñoz Izquierdo, Nora
dc.contributor.authorSegovia Vargas, María Jesús
dc.contributor.authorCamacho Miñano, Juana María Del Mar
dc.contributor.authorPérez Pérez, Yolanda
dc.date.accessioned2024-01-09T11:19:23Z
dc.date.available2024-01-09T11:19:23Z
dc.date.issued2022
dc.description.abstractWe investigate whether key audit matter (KAM) paragraphs disclosed in extended audit reports—paragraphs in which the auditor highlights significant risks and critical judgments of the company—contribute to assess corporate credit ratings. This assessment is a complicated and expensive process to grade the reliability of a company, and it is relevant for many stakeholders, such as issuers, investors, and creditors. Although credit rating evaluations have attracted the interest of many researchers, previous studies have mainly focused only on financial ratios. We are the first to use KAMs for credit rating modelling purposes. Applying four machine learning techniques to answer this real-world problem—C4.5 decision tree, two different rule induction classifiers (PART algorithm and Rough Set) and the logistic regression methodology—, our evidence suggests that by simply identifying the KAM topics disclosed in the report, any decision-maker can assess credit scores with 74% accuracy using the rules provided by the PART algorithm. These rules specifically indicate that KAMs on both external (such as going concern) and internal (such as company debt) aspects may contribute to explaining a company’s credit rating. The rule induction classifiers have similar predictive power. Interestingly, if we combine audit data with accounting ratios, the predictive power of our model increases to 84%, outperforming the accuracy in the existing literature.eng
dc.description.departmentDepto. de Economía Financiera y Actuarial y Estadística
dc.description.departmentDepto. de Administración Financiera y Contabilidad
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationMuñoz-Izquierdo, Nora, María Jesús Segovia-Vargas, María-del-Mar Camacho-Miñano, y Yolanda Pérez-Pérez. «Machine Learning in Corporate Credit Rating Assessment Using the Expanded Audit Report». Machine Learning 111, n.o 11 (noviembre de 2022): 4183-4215. https://doi.org/10.1007/s10994-022-06226-4.
dc.identifier.doi10.1007/s10994-022-06226-4
dc.identifier.essn1573-0565
dc.identifier.issn0885-6125
dc.identifier.officialurlhttps://doi.org/10.1007/s10994-022-06226-4
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s10994-022-06226-4
dc.identifier.urihttps://hdl.handle.net/20.500.14352/91991
dc.journal.titleMachine Learning
dc.language.isoeng
dc.page.final4215
dc.page.initial4183
dc.publisherSpringer
dc.relation.projectIDSpanish Ministry of Science and Innovation PID 2020-115700RB-I00
dc.rights.accessRightsopen access
dc.subject.keywordCorporate credit rating
dc.subject.keywordMachine learning techniques
dc.subject.keywordAccounting ratios
dc.subject.keywordExpanded audit report
dc.subject.keywordKey audit matters
dc.subject.ucmEmpresas
dc.subject.unesco53 Ciencias Económicas
dc.subject.unesco5311 Organización y Dirección de Empresas
dc.titleMachine learning in corporate credit rating assessment using the expanded audit report
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number111
dspace.entity.typePublication
relation.isAuthorOfPublication44aad0f9-4f64-46ee-a6b7-e9a317fa42fd
relation.isAuthorOfPublicationce97b4c1-b2f9-47ba-80ef-29e0f4a261cd
relation.isAuthorOfPublication.latestForDiscovery44aad0f9-4f64-46ee-a6b7-e9a317fa42fd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Machine_learning.pdf
Size:
555.23 KB
Format:
Adobe Portable Document Format

Collections