Identifiability and Observability Analysis for Epidemiological Models: Insights on the SIRS Model

dc.contributor.authorKubik, Alicja B.
dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorRapaport, Alain
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.date.accessioned2025-06-11T13:43:59Z
dc.date.available2025-06-11T13:43:59Z
dc.date.issued2025
dc.description.abstractThe problems of observability and identifiability have been of great interest as previous steps to estimating parameters and initial conditions of dynamical systems to which some known data (observations) are associated. While most works focus on linear and polynomial/rational systems of ODEs, general nonlinear systems have received far less attention and, to the best of our knowledge, no general constructive methodology has been proposed to assess and guarantee parameter and state recoverability in this context. We consider a class of systems of parameterized nonlinear ODEs and some observations, and study if a system of this class is observable, identifiable or jointly observable-identifiable; our goal is to identify its parameters and/or reconstruct the initial condition from the data. To achieve this, we introduce a family of efficient and fully constructive procedures that allow recoverability of the unknowns with low computational cost and address the aforementioned gap. Each procedure is tailored to different observational scenarios and based on the resolution of linear systems. As a case study, we apply these procedures to several epidemic models, with a detailed focus on the SIRS model, demonstrating its joined observability-identifiability when only a portion of the infected individuals is measured, a scenario that has not been studied before. In contrast, for the same observations, the SIR model is observable and identifiable, but not jointly observable-identifiable. This distinction allows us to introduce a novel approach to discriminating between different epidemiological models (SIR vs. SIRS) from short-time data. For these two models, we illustrate the theoretical results through some numerical experiments, validating the approach and highlighting its practical applicability to real-world scenarios.
dc.description.agreementMinisterio de Ciencia, Innovación y Universidades
dc.description.agreementAgence Nationale de la Recherche
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedFALSE
dc.description.statussubmitted
dc.identifier.urihttps://hdl.handle.net/20.500.14352/121212
dc.language.isoeng
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106337GB-I00/ES/MODELIZACION, SIMULACION NUMERICA Y OPTIMIZACION PARA VARIOS PROBLEMAS DE INTERES GENERAL/
dc.relation.projectIDPID2023-146754NB-I00
dc.relation.projectIDPCI2024-153478
dc.rights.accessRightsopen access
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco1202.19 Ecuaciones Diferenciales Ordinarias
dc.subject.unesco3202 Epidemiología
dc.titleIdentifiability and Observability Analysis for Epidemiological Models: Insights on the SIRS Model
dc.typeworking paper
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery6d5e1204-9b8a-40f4-b149-02d32e0bbed2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ABK-BI-AR-AMR_SIRSmodel.pdf
Size:
783.05 KB
Format:
Adobe Portable Document Format

Collections