Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum simulation of a topological Mott insulator with Rydberg atoms in a Lieb lattice

dc.contributor.authorDauphin, Alexander
dc.contributor.authorMüller, Markus
dc.contributor.authorMartín-Delgado Alcántara, Miguel Ángel
dc.date.accessioned2023-06-18T06:53:34Z
dc.date.available2023-06-18T06:53:34Z
dc.date.issued2016-04-11
dc.description©2016 American Physical Society. A.D. thanks N. Goldman and P. Gaspard for support and valuable discussions. We acknowledge support by the Spanish MINECO Grant No. FIS2012-33152, FIS2015-67411, the CAM research consortium QUITEMAD+ S2013/ICE-2801, F.R.S.-FNRS Belgium, EU grants OSYRIS (ERC-2013-AdG Grant No. 339106), EQuaM (FP7/2007-2013 Grant No. 323714, SIQS (FP7-ICT-2011-9 No. 600645), QUIC (H2020-FETPROACT-2014 No. 641122), Spanish MINECO grants (Severo Ochoa SEV-2015-0522 and FOQUS FIS2013-46768-P), Catalan AGAUR SGR 874, Fundacio Cellex, and the U.S. Army Research Office through Grant No. W911NF-14-1-0103.
dc.description.abstractWe propose a realistic scheme to quantum simulate the so-far experimentally unobserved topological Mott insulator phase-an interaction-driven topological insulator-using cold atoms in an optical Lieb lattice. To this end, we study a system of spinless fermions in a Lieb lattice, exhibiting repulsive nearest-and next-to-nearest-neighbor interactions and derive the associated zero-temperature phase diagram within mean-field approximation. In particular, we analyze how the interactions can dynamically generate a charge density wave ordered, a nematic, and a topologically nontrivial quantum anomalous Hall phase. We characterize the topology of the different phases by the Chern number and discuss the possibility of phase coexistence. Based on the identified phases, we propose a realistic implementation of this model using cold Rydberg-dressed atoms in an optical lattice. The scheme, which allows one to access, in particular, the topological Mott insulator phase, robustly and independently of its exact position in parameter space, merely requires global, always-on off-resonant laser coupling to Rydberg states and is feasible with state-of-the-art experimental techniques that have already been demonstrated in the laboratory.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Comepetitividad (MINECO), España
dc.description.sponsorshipComunidad de Madrid (CAM)
dc.description.sponsorshipQuantum Information Technologies Madrid (QUITEMAD+), CAM
dc.description.sponsorshipNational Fund for Scientific Research (FNRS), Bélgica
dc.description.sponsorshipF.R.S-FNRS, Bélgica
dc.description.sponsorshipSeventh Framework Programme FP7 = Séptimo Programa Marco, UE
dc.description.sponsorshipUnión Europea (UE)
dc.description.sponsorshipOsirys Project (UE)
dc.description.sponsorshipEquam Global Value, FCP, Luxemburgo
dc.description.sponsorshipProyecto SIQS (Simulators and Interfaces with Quantum Systems), UE
dc.description.sponsorshipProyecto QUIC (Quantum simulations of insulators and conductors), UE
dc.description.sponsorshipAyudas para contratos predoctorales Severo Ochoa (MINECO)
dc.description.sponsorshipAgència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR)
dc.description.sponsorshipGeneralitat de Catalunya
dc.description.sponsorshipFundacio Cellex
dc.description.sponsorshipU.S. Army Research Office
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37974
dc.identifier.doi10.1103/PhysRevA.93.043611
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.93.043611
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24514
dc.issue.number4
dc.journal.titlePhysical review A
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2012-33152
dc.relation.projectIDFIS2015-67411
dc.relation.projectIDS2013/ICE-2801
dc.relation.projectIDERC-2013-AdG Grant No. 339106
dc.relation.projectIDFP7/2007-2013 Grant No. 323714
dc.relation.projectIDFP7-ICT-2011-9 No. 600645
dc.relation.projectIDH2020-FETPROACT-2014 No. 641122
dc.relation.projectIDSEV-2015-0522
dc.relation.projectIDFIS2013-46768-P
dc.relation.projectIDSGR 874
dc.relation.projectIDW911NF-14-1-0103
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordDirac points
dc.subject.keywordSuperconductors
dc.subject.keywordRealization
dc.subject.keywordFermions
dc.subject.keywordWells
dc.subject.keywordPhase
dc.subject.keywordModel
dc.subject.keywordGas
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleQuantum simulation of a topological Mott insulator with Rydberg atoms in a Lieb lattice
dc.typejournal article
dc.volume.number93
dcterms.references1. X.-G. Wen, Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford University Press, Oxford, U.K., 2004). 2. B. A. Bernevig, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, NJ, 2013). 3. A. Y. Kitaev, A. Shen, and M. N. Vyalyi, Classical and Quantum Computation (American Mathematical Society, Providence, RI, 2002). 4. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008). 5. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). 6. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). 7. J. E. Moore, Nature (London) 464, 194 (2010). 8. M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007). 9. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London) 452, 970 (2008). 10. D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Science 323, 919 (2009). 11. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). 12. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006). 13. L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007). 14. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007). 15. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988). 16. A. Kitaev, AIP Conf. Proc. 1134, 22 (2009). 17. S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New J. Phys. 12, 065010 (2010). 18. J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010). 19. T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B 82, 235114 (2010). 20. M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Phys. Rev. X 3, 031005 (2013). 21. M. Hohenadler and F. F. Assaad, J. Phys.: Condens. Matter 25, 143201 (2013). 22. S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys. Rev. Lett. 100, 156401 (2008). 23. K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009). 24. J. Wen, A. Rüegg, C.-C. Joseph Wang, and G. A. Fiete, Phys. Rev. B 82, 075125 (2010). 25. Q. Liu, H. Yao, and T. Ma, Phys. Rev. B 82, 045102 (2010). 26. W.-F. Tsai, C. Fang, H. Yao, and J. Hu, New J. Phys. 17, 055016 (2015). 27. B. Dóra, I. F. Herbut, and R. Moessner, Phys. Rev. B 90, 045310 (2014). 28. C. Weeks and M. Franz, Phys. Rev. B 81, 085105 (2010). 29. A. G. Grushin, E. V. Castro, A. Cortijo, F. de Juan, M. A. H. Vozmediano, and B. Valenzuela,Phys. Rev. B 87, 085136 (2013). 30. N. A. García-Martínez, A. G. Grushin, T. Neupert, B. Valenzuela, and E. V. Castro, Phys. Rev. B88, 245123 (2013). 31. M. Daghofer and M. Hohenadler, Phys. Rev. B 89, 035103 (2014). 32. T. Đurić, N. Chancellor, and I. F. Herbut, Phys. Rev. B 89, 165123 (2014). 33. A. Dauphin, M. Müller, and M. A. Martin-Delgado, Phys. Rev. A 86, 053618 (2012). 34. S. Kitamura, N. Tsuji, and H. Aoki, Phys. Rev. Lett. 115, 045304 (2015). 35. X. Li and S. D. Sarma, Nat. Commun. 6, 7137 (2015). 36. M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett.111, 185301 (2013). 37. H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013). 38. M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N. Goldman, Nat. Phys. 11, 162 (2014). 39. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014). 40. L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature (London) 483, 302 (2012). 41. T. Uehlinger, D. Greif, G. Jotzu, L. Tarruell, T. Esslinger, L. Wang, and M. Troyer, Eur. Phys. J. Spec. Top. 217, 121 (2013). 42. S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, and Y. Takahashi, Sci. Adv. 1, e1500854 (2015). 43. R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C. Mejía-Cortés, S. Weimann, A. Szameit, and M. I. Molina, Phys. Rev. Lett. 114, 245503 (2015). 44. D. Guzmán-Silva, C. Mejía-Cortés, M. A. Bandres, M. C. Rechtsman, S. Weimann, S. Nolte, M. Segev, A. Szameit, and R. A. Vicencio, New J. Phys. 16, 063061 (2014). 45. S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Öhberg, E. Andersson, and R. R. Thomson, Phys. Rev. Lett. 114, 245504 (2015). 46. N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302 (2010). 47. G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, Phys. Rev. Lett. 104, 223002 (2010). 48. J. B. Balewski, A. T. Krupp, A. Gaj, S. Hofferberth, R. Low, and T. Pfau, New J. Phys. 16, 063012 (2014). 49. R. M. W. van Bijnen and T. Pohl, Phys. Rev. Lett. 114, 243002 (2015). 50. M. Viteau, M. G. Bason, J. Radogostowicz, N. Malossi, D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 107, 060402 (2011). 51. P. Schauss, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Nature (London) 491, 87 (2012). 52. P. Schauß, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macr, T. Pohl, I. Bloch, and C. Gross,Science 347, 1455 (2015). 53. T. M. Weber, M. Höning, T. Niederprum, T. Manthey, O. Thomas, V. Guarrera, M. Fleischhauer, G. Barontini, and H. Ott, Nat. Phys. 11, 157 (2015). 54. H. Labuhn, D. Barredo, S. Ravets, S. de Leseleuc, T. Macri, T. Lahaye, and A. Browaeys,arXiv:1509.04543. 55. R. Shen, L. B. Shao, B. Wang, and D. Y. Xing, Phys. Rev. B 81, 041410 (2010). 56. V. Apaja, M. Hyrkäs, and M. Manninen, Phys. Rev. A 82, 041402 (2010). 57. C. Weeks and M. Franz, Phys. Rev. B 82, 085310 (2010). 58. The latter can be verified by computing the transverse conductivity σxy=∑iCiσ0, which is proportional to the sum of the Chern numbers Ci of the occupied bands and to the conductivity quantum σ0 [59], yielding σxy=0. 59. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982). 60. H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford University Press, Oxford, U.K., 2004). 61. T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74, 1674 (2005). 62. N. Goldman, D. F. Urban, and D. Bercioux, Phys. Rev. A 83, 063601 (2011). 63. M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010). 64. E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos, and J. J. Garcia-Ripoll, Phys. Rev. Lett. 107, 235301 (2011). 65. H. M. Price and N. R. Cooper, Phys. Rev. A 85, 033620 (2012). 66. A. Dauphin and N. Goldman, Phys. Rev. Lett. 111, 135302 (2013). 67. L. Wang, A. A. Soluyanov, and M. Troyer, Phys. Rev. Lett. 110, 166802 (2013). 68. P. Hauke, M. Lewenstein, and A. Eckardt, Phys. Rev. Lett. 113, 045303 (2014). 69. D.-L. Deng, S.-T. Wang, and L.-M. Duan, Phys. Rev. A 90, 041601 (2014). 70. N. Goldman, J. Beugnon, and F. Gerbier, Phys. Rev. Lett. 108, 255303 (2012). 71. N. Goldman, J. Dalibard, A. Dauphin, F. Gerbier, M. Lewenstein, P. Zoller, and I. B. Spielman,Proc. Natl. Acad. Sci. USA 110, 6736 (2013). 72. T. F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, U.K., 1994).
dspace.entity.typePublication
relation.isAuthorOfPublication1cfed495-7729-410a-b898-8196add14ef6
relation.isAuthorOfPublication.latestForDiscovery1cfed495-7729-410a-b898-8196add14ef6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martín Delgado Alcántara MÁ 107 LIBRE.pdf
Size:
917.26 KB
Format:
Adobe Portable Document Format

Collections