Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Aluminum Nanoholes for Optical Biosensing

dc.contributor.authorBarrios, Carlos
dc.contributor.authorCanalejas-Tejero, Víctor
dc.contributor.authorHerranz, Sonia
dc.contributor.authorUrraca Ruiz, Javier
dc.contributor.authorMoreno Bondi, María Cruz
dc.contributor.authorAvella-Oliver, Miquel
dc.contributor.authorMaquieira, Ángel
dc.contributor.authorPuchades, Rosa
dc.date.accessioned2023-06-18T06:05:29Z
dc.date.available2023-06-18T06:05:29Z
dc.date.issued2015-07-09
dc.description.abstractSub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.
dc.description.departmentDepto. de Química Analítica
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/66144
dc.identifier.doi10.3390/bios5030417
dc.identifier.issn2079-6374
dc.identifier.officialurlhttps://doi.org/10.3390/bios5030417
dc.identifier.relatedurlhttps://www.mdpi.com/2079-6374/5/3/417
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23868
dc.issue.number3
dc.journal.titleBiosensors
dc.language.isoeng
dc.page.final431
dc.page.initial417
dc.publisherMDPI
dc.relation.projectIDTEC2012-31145, CTQ2012-37573-C02 y CTQ 2013-45875-R
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordaluminum
dc.subject.keywordmetal nanoholes
dc.subject.keywordnanohole arrays
dc.subject.keywordsurface plasmon resonance
dc.subject.keywordoptical biosensing
dc.subject.keywordnanopatterning
dc.subject.keywordtransfer printing
dc.subject.keywordmolecularly imprinted polymer
dc.subject.keywordphotopolymerization
dc.subject.ucmMateriales
dc.subject.ucmOptica (Química)
dc.subject.unesco3312 Tecnología de Materiales
dc.titleAluminum Nanoholes for Optical Biosensing
dc.typejournal article
dc.volume.number5
dspace.entity.typePublication
relation.isAuthorOfPublicationdad90ef4-9804-435a-99d0-f263ad1f4cb6
relation.isAuthorOfPublication8766057b-6628-4a02-a6db-20bddfaf3054
relation.isAuthorOfPublication.latestForDiscoverydad90ef4-9804-435a-99d0-f263ad1f4cb6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
biosensors-05-00417.pdf
Size:
1.67 MB
Format:
Adobe Portable Document Format

Collections