On the Kunen-Shelah properties in Banach spaces
dc.contributor.author | Suárez Granero, Antonio | |
dc.contributor.author | Jiménez Sevilla, María Del Mar | |
dc.contributor.author | Montesinos, Alejandro | |
dc.contributor.author | Moreno, José Pedro | |
dc.contributor.author | Plichko, Anatolij | |
dc.date.accessioned | 2023-06-20T18:47:07Z | |
dc.date.available | 2023-06-20T18:47:07Z | |
dc.date.issued | 2003 | |
dc.description.abstract | We introduce and study the Kunen-Shelah properties KSi, i = 0, 1,..., 7. Let us highlight for a Banach space X some of our results: (1) X ∗ has a w ∗-nonseparable equivalent dual ball iff X has an ω1-polyhedron (i.e., a bounded family {xi}i<ω1 such that xj / ∈ co({xi: i ∈ ω1 \ {j}}) for every j ∈ ω1) iff X has an uncountable bounded almost biorthonal system (UBABS) of type η, for some η ∈ [0, 1), (i.e., a bounded family {(xα, fα)}1≤α<ω1 ⊂ X × X ∗ such that fα(xα) = 1 and |fα(xβ) | ≤ η, if α = β); (2) if X has an uncountable ω-independent system then X has an UBABS of type η for every η ∈ (0, 1); (3) if X has not the property (C) of Corson, then X has an ω1-polyhedron; (4) X has not an ω1-polyhedron iff X has not a convex right-separated ω1-family (i.e., a bounded family {xi}i<ω1 such that xj / ∈ co({xi: j < i < ω1}) for every j ∈ ω1) iff every w ∗-closed convex subset of X ∗ is w ∗-separable iff every convex subset of X ∗ is w ∗-separable iff µ(X) = 1, µ(X) being the Finet-Godefroy index of X (see [1]). | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22119 | |
dc.identifier.issn | 0039-3223 | |
dc.identifier.officialurl | http://journals.impan.gov.pl/sm/index.html | |
dc.identifier.relatedurl | http://www.impan.pl/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58609 | |
dc.issue.number | 2 | |
dc.journal.title | Studia Mathematica | |
dc.language.iso | eng | |
dc.page.final | 120 | |
dc.page.initial | 97 | |
dc.publisher | Polish Acad Sciencies Inst Mathematics | |
dc.relation.projectID | PB97-0240 | |
dc.relation.projectID | PB97-0377 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | Uncountable basic sequences | |
dc.subject.keyword | Biorthogonal and Markuschevich systems | |
dc.subject.keyword | W-independence | |
dc.subject.keyword | Kunen-Shelah properties. | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | On the Kunen-Shelah properties in Banach spaces | en |
dc.type | journal article | |
dc.volume.number | 157 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1e1de236-bc56-40c0-a2d8-70742399900e | |
relation.isAuthorOfPublication | 36c2a4e7-ac6d-450d-b64c-692a94ff6361 | |
relation.isAuthorOfPublication.latestForDiscovery | 1e1de236-bc56-40c0-a2d8-70742399900e |
Download
Original bundle
1 - 1 of 1