Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A counting problem in ergodic theory and extrapolation for one-sided weights

Loading...
Thumbnail Image

Full text at PDC

Publication date

2018

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

M.J. Carro, M. Lorente, F.J. Martín-Reyes, A counting problem in ergodic theory and extrapolation for one-sided weights, JAMA 134 (2018) 237–254. https://doi.org/10.1007/s11854-018-0008-0.

Abstract

The purpose of this paper is to prove that, given a dynamical system (X,M, μ, τ) and 0 < q < 1, the Lorentz spaces L1,q(μ) satisfy the so-called Return Times Property for the Tail, contrary to what happens in the case q = 1. In fact, we consider a more general case than in previous papers since we work with a σ-finite measure μ and a transformation τ which is only Cesàro bounded. The proof uses the extrapolation theory of Rubio de Francia for one-sided weights. These results are of independent interest and can be applied to many other situations.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections