Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Navier-Stokes transport coefficients for a model of a confined quasi-two-dimensional granular binary mixture

dc.contributor.authorGarzo, Vicente
dc.contributor.authorSoto, Rodrigo
dc.contributor.authorBrito López, Ricardo
dc.date.accessioned2023-06-17T09:09:37Z
dc.date.available2023-06-17T09:09:37Z
dc.date.issued2021-02
dc.description© 2021 Author(s). Published under license by AIP Publishing. The research of V.G. was supported by the Spanish Ministerio de Economía y Competitividad through Grant No. FIS2016-76359-P and by the Junta de Extremadura (Spain) (Grant Nos. IB16013 and GR18079), partially financed by "Fondo Europeo de Desarrollo Regional" funds. The work of R.B. was supported by the Spanish Ministerio de Economía y Competitividad through Grant No. FIS2017-83709-R. The research of R.S. was supported by the FONDECYT (Grant No. 1180791) of ANID (Chile).
dc.description.abstractThe Navier-Stokes transport coefficients for a model of a confined quasi-two-dimensional granular binary mixture of inelastic hard spheres are determined from the Boltzmann kinetic equation. A normal or hydrodynamic solution to the Boltzmann equation is obtained via the Chapman-Enskog method for states near the local version of the homogeneous time-dependent state. The mass, momentum, and heat fluxes are determined to first order in the spatial gradients of the hydrodynamic fields, and the associated transport coefficients are identified. They are given in terms of the solutions of a set of coupled linear integral equations. In addition, in contrast to the previous results obtained for low-density granular mixtures, there are also nonzero contributions to the first-order approximations to the partial temperatures T-i((1)) and the cooling rate zeta((1)). Explicit forms for the diffusion transport coefficients, the shear viscosity coefficient, and the quantities T-i((1)) and zeta((1)) are obtained by assuming steady state conditions and by considering the leading terms in a Sonine polynomial expansion. The above transport coefficients are given in terms of the coefficients of restitution, concentration, and the masses and diameters of the components of the mixture. The results apply, in principle, for arbitrary degree of inelasticity and are not limited to specific values of concentration, mass, and/or size ratios. As a simple application of these results, the violation of the Onsager reciprocal relations for a confined granular mixture is quantified in terms of the parameter space of the problem.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipJunta de Extremadura/FEDER
dc.description.sponsorshipFONDECYT of ANID (Chile)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/66881
dc.identifier.doi10.1063/5.0032919
dc.identifier.issn1070-6631
dc.identifier.officialurlhttps://doi.org/10.1063/5.0032919
dc.identifier.relatedurlhttps://aip.scitation.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8299
dc.issue.number2
dc.journal.titlePhysics of fluids
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDFIS2016-76359-P; FIS2017-83709-R
dc.relation.projectIDIB16013; GR18079
dc.relation.projectID1180791
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordMechanics
dc.subject.keywordPhysics
dc.subject.keywordFluids & Plasmas
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleNavier-Stokes transport coefficients for a model of a confined quasi-two-dimensional granular binary mixture
dc.typejournal article
dc.volume.number33
dspace.entity.typePublication
relation.isAuthorOfPublicationb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87
relation.isAuthorOfPublication.latestForDiscoveryb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito60preprint.pdf
Size:
523.78 KB
Format:
Adobe Portable Document Format

Collections