Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On twins in the four-sphere. I.

Loading...
Thumbnail Image

Full text at PDC

Publication date

1983

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press
Citations
Google Scholar

Citation

Abstract

E. C. Zeeman [Trans. Amer. Math. Soc. 115 (1965), 471–495; MR0195085 (33 #3290)] introduced the process of twist spinning a 1-knot to obtain a 2-knot (in S4), and proved that a twist-spun knot is fibered with finite cyclic structure group. R. A. Litherland [ibid. 250 (1979), 311–331; MR0530058 (80i:57015)] generalized twist-spinning by performing during the spinning process rolling operations and other motions of the knot in three-space. The first paper generalizes those results by introducing the concept of a twin. A twin W is a subset of S4 made up of two 2-knots R and S that intersect transversally in two points. The prototype of a twin is the n-twist spun of K (that is, the union of the n-twist spun knot of K and the boundary of the 3-ball in which the original knot lies). The exterior of a twin, X(W), is the closure of S4−N(W), where N(W) is a regular neighborhood of W in S4. The first paper considers properties of X(W), and uses these to characterize the automorphisms of a 2-torus standardly embedded in S4, which extend to S4, and also to prove that any homotopy sphere obtained by Dehn surgery on such a 2-torus is the real S4. The second paper is devoted to the fibration problem, i.e. given a twin in S4, try to understand what surgeries in W give a twin W′ which has a component that is a fibered knot (as in the Zeeman theorem). This approach yields alternative proofs of the twist-spinning theorem of Zeeman, and of the roll-twist spinning results of Litherland. New fibered 2-knots are produced through these methods.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections