Detección de cáncer utilizando deep learning.
Loading...
Official URL
Full text at PDC
Publication date
2025
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Este Trabajo de Fin de Grado presenta el desarrollo de un sistema basado en inteligencia artificial diseñado para asistir en la detección de diferentes tipos de cáncer mediante el análisis automatizado de imágenes médicas. El enfoque principal del proyecto se ha centrado en la aplicación de técnicas avanzadas de visión por computador y aprendizaje profundo, especialmente mediante redes neuronales convolucionales, con el objetivo de entrenar modelos capaces de identificar patrones visuales característicos de cáncer de piel a partir de imágenes de lesiones cutáneas, y de cáncer de colon y pulmón mediante imágenes histopatológicas.
Durante el desarrollo del sistema se ha llevado a cabo un proceso exhaustivo de búsqueda, análisis y preprocesamiento de datos, utilizando bases de datos médicas públicas. Además, se ha desarrollado una aplicación móvil para Android que permite ejecutar los modelos de forma local en el dispositivo, sin necesidad de conexión a servidores externos, lo que facilita su uso en entornos reales con recursos limitados. Como parte clave del sistema, se ha integrado un mecanismo de explicabilidad basado en técnicas como GradCAM, adaptadas para funcionar eficientemente en el entorno móvil, con el fin de proporcionar interpretaciones visuales que expliquen las decisiones del modelo.
This Final Degree Project presents the development of an artificial intelligencebased system designed to assist in the detection of various types of cancer through the automated analysis of medical images. The project focuses on the application of advanced techniques in computer vision and deep learning, particularly convolutional neural networks, with the aim of training models capable of recognizing visual patterns associated with skin cancer from images of skin lesions, and colon and lung cancer from histopathological images. Throughout the development process, a thorough search, analysis, and preprocessing of medical image datasets was carried out using publicly available sources. Furthermore, a mobile application for Android was implemented to enable on-device inference without relying on external servers, making it suitable for real-world scenarios with limited resources. As a key component, an interpretability mechanism was integrated using techniques such as GradCAM, adapted to operate efficiently in mobile environments, in order to provide visual explanations of the the predictions of the model.
This Final Degree Project presents the development of an artificial intelligencebased system designed to assist in the detection of various types of cancer through the automated analysis of medical images. The project focuses on the application of advanced techniques in computer vision and deep learning, particularly convolutional neural networks, with the aim of training models capable of recognizing visual patterns associated with skin cancer from images of skin lesions, and colon and lung cancer from histopathological images. Throughout the development process, a thorough search, analysis, and preprocessing of medical image datasets was carried out using publicly available sources. Furthermore, a mobile application for Android was implemented to enable on-device inference without relying on external servers, making it suitable for real-world scenarios with limited resources. As a key component, an interpretability mechanism was integrated using techniques such as GradCAM, adapted to operate efficiently in mobile environments, in order to provide visual explanations of the the predictions of the model.
Description
Trabajo de Fin de Grado en Ingeniería Informática y Grado en Ingeniería del Software, Facultad de Informática UCM, Departamento de Sistemas Informáticos y Computación, Curso 2024/2025










