Magnetism, rotation, and nonthermal emission in cool stars: average magnetic field measurements in 292 M dwarfs

Thumbnail Image
Full text at PDC
Publication Date
Caballero, J. A.
otros, ...
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
EDP Sciencies
Google Scholar
Research Projects
Organizational Units
Journal Issue
Stellar dynamos generate magnetic fields that are of fundamental importance to the variability and evolution of Sun-like and low-mass stars, and for the development of their planetary systems. As a key to understanding stellar dynamos, empirical relations between stellar parameters and magnetic fields are required for comparison to ab initio predictions from dynamo models. We report measurements of surface-average magnetic fields in 292 M dwarfs from a comparison with radiative transfer calculations; for 260 of them, this is the first measurement of this kind. Our data were obtained from more than 15 000 high-resolution spectra taken during the CARMENES project. They reveal a relation between average field strength, ⟨B⟩, and Rossby number, Ro, resembling the well-studied rotation–activity relation. Among the slowly rotating stars, we find that magnetic flux, Φ_(B), is proportional to rotation period, P, and among the rapidly rotating stars that average surface fields do not grow significantly beyond the level set by the available kinetic energy. Furthermore, we find close relations between nonthermal coronal X-ray emission, chromospheric Hα and Ca H&K emission, and magnetic flux. Taken together, these relations demonstrate empirically that the rotation–activity relation can be traced back to a dependence of the magnetic dynamo on rotation. We advocate the picture that the magnetic dynamo generates magnetic flux on the stellar surface proportional to rotation rate with a saturation limit set by the available kinetic energy, and we provide relations for average field strengths and nonthermal emission that are independent of the choice of the convective turnover time. We also find that Ca H&K emission saturates at average field strengths of ⟨B⟩≈800 G while Hα and X-ray emission grow further with stronger fields in the more rapidly rotating stars. This is in conflict with the coronal stripping scenario predicting that in the most rapidly rotating stars coronal plasma would be cooled to chromospheric temperatures.
© ESO 2022. Artículo firmado por 19 autores. We thank an anomymous referee for helpful suggestions, and we thank Almudena García López for setting up the electronic data archive. CARMENES is an instrument at the Centro Astronómico HispanoAlemán (CAHA) at Calar Alto (Almería, Spain), operated jointly by the Junta de Andalucía and the Instituto de Astrofísica de Andalucía (CSIC). The authors wish to express their sincere thanks to all members of the Calar Alto staff for their expert support of the instrument and telescope operation. CARMENES was funded by the Max-Planck-Gesellschaft (MPG), the Consejo Superior de Investigaciones Científicas (CSIC), the Ministerio de Economía y Competitividad (MINECO) and the European Regional Development Fund (ERDF) through projects FICTS-2011-02, ICTS-2017-07-CAHA4, and CAHA16-CE-3978, and the members of the CARMENES Consortium (Max-Planck-Institut für Astronomie, Instituto de Astrofísica de Andalucía, Landessternwarte Königstuhl, Institut de Ciències de l’Espai, Institut für Astrophysik Göttingen, Universidad Complutense de Madrid, Thüringer Landessternwarte Tautenburg, Instituto de Astrofísica de Canarias, Hamburger Sternwarte, Centro de Astrobiología and Centro Astronómico Hispano-Alemán), with additional contributions by the MINECO, the Deutsche Forschungsgemeinschaft through the Major Research Instrumentation Programme and Research Unit FOR2544 “Blue Planets around Red Stars”, the Klaus Tschira Stiftung, the states of Baden-Württemberg and Niedersachsen, by the Junta de Andalucía. We acknowledge financial support from the Agencia Estatal de Investigación of the Ministerio de Ciencia e Innovación and the ERDF “A way of making Europe” through project PID2019-109522GB-C5[1:4]/AEI/10.13039/501100011033 and the Centre of Excellence “Severo Ochoa” and “María de Maeztu” awards to the Instituto de Astrofísica de Canarias (CEX2019-000920-S), Instituto de Astrofísica de Andalucía (SEV-2017-0709), and Centro de Astrobiología (MDM-2017-0737), the Deutsche Forschungsgemeinschaft Heisenberg programme (KA4825/4-1), and the Generalitat de Catalunya/CERCA programme.
UCM subjects
Unesco subjects