Towards a new urban geography of expenditure: Using bank card transactions data to analyze multi-sector spatiotemporal distributions
| dc.contributor.author | Carpio Pinedo, Jose | |
| dc.contributor.author | Romanillos Arroyo, Gustavo | |
| dc.contributor.author | Aparicio, Daniel | |
| dc.contributor.author | Hernández Martín-Caro, María Soledad | |
| dc.contributor.author | García Palomares, Juan Carlos | |
| dc.contributor.author | Gutiérrez Puebla, Javier | |
| dc.date.accessioned | 2023-06-22T10:55:13Z | |
| dc.date.available | 2023-06-22T10:55:13Z | |
| dc.date.issued | 2022-08-10 | |
| dc.description | CRUE-CSIC (Acuerdos Transformativos 2022) | |
| dc.description.abstract | The spatial distribution of commercial activities is vital to support healthy lifestyles and to achieve livable public spaces and environmental, social and economic sustainability in our cities. However, commercial activities require a constant flow of expenditure for their own viability. As a result, understanding the spatial and temporal distribution of expenditure is fundamental, although the lack of detailed, complete data sources has impeded this task until now. Bank card data paves the way for a new urban geography of expenditure, thanks to its fine spatial and temporal granularity along with the uniform coverage of all commercial sectors. In this paper, we analyze temporal, spatial, and spatiotemporal distributions of expenditure at the intraurban scale of the city of Madrid (Spain), combining spatial statistical tools (Getis-Ord General for global autocorrelation and Getis-Ord Gi* hot spot analysis for local autocorrelation) with k-means cluster analysis and spatiotemporal tools (Time Series Clustering analysis and Temporal Hot Spot Analysis). Our analysis confirms the strong center-periphery gradient described in previous literature, but with a CBD integrated by distinct specialized areas. The paper demonstrates that bank card data has a great potential to support a new geography of expenditure that could strengthen decision-making in planning and retailing. | |
| dc.description.department | Depto. de Geografía | |
| dc.description.faculty | Fac. de Geografía e Historia | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN)//AEI/ 10.13039/501100011033 | |
| dc.description.sponsorship | Comunidad de Madrid | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/74129 | |
| dc.identifier.doi | 10.1016/j.cities.2022.103894 | |
| dc.identifier.issn | 0264-2751 | |
| dc.identifier.officialurl | https://doi.org/10.1016/j.cities.2022.103894 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/71888 | |
| dc.issue.number | 103894 | |
| dc.journal.title | Cities | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier | |
| dc.relation.projectID | (PID2020- 116656RB-I00) | |
| dc.relation.projectID | INNJOBMAD-CM (H2019/HUM-5761) | |
| dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | |
| dc.rights.accessRights | open access | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
| dc.subject.keyword | Economic geography | |
| dc.subject.keyword | Spatial analysis | |
| dc.subject.keyword | Big data | |
| dc.subject.keyword | Transactions data | |
| dc.subject.keyword | Retailing | |
| dc.subject.keyword | Shopping centers | |
| dc.subject.keyword | Madrid | |
| dc.subject.ucm | Análisis Multivariante | |
| dc.subject.ucm | Comercio | |
| dc.subject.ucm | Economía regional | |
| dc.subject.ucm | Geografía económica | |
| dc.subject.ucm | Geografía | |
| dc.subject.ucm | Geografía humana | |
| dc.subject.ucm | Geografía regional | |
| dc.subject.ucm | Sistemas de información geográfica | |
| dc.subject.unesco | 1209.09 Análisis Multivariante | |
| dc.subject.unesco | 5304.03 Comercio exterior | |
| dc.subject.unesco | 5401 Geografía Económica | |
| dc.subject.unesco | 2505 Geografía | |
| dc.subject.unesco | 5403 Geografía Humana | |
| dc.subject.unesco | 5404 Geografía Regional | |
| dc.title | Towards a new urban geography of expenditure: Using bank card transactions data to analyze multi-sector spatiotemporal distributions | |
| dc.type | journal article | |
| dc.volume.number | 131 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 7af12201-dd9c-4deb-8f3e-16bacc43e6dd | |
| relation.isAuthorOfPublication | b25b5524-305e-4aa0-a30e-5b15a398806c | |
| relation.isAuthorOfPublication | 0b4c21b2-a5c3-4dfb-8088-c1ba13c4dd17 | |
| relation.isAuthorOfPublication.latestForDiscovery | 7af12201-dd9c-4deb-8f3e-16bacc43e6dd |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Carpio et al 2022 Cities.pdf
- Size:
- 16.08 MB
- Format:
- Adobe Portable Document Format


