On the Boussinesq system with non linear thermal diffusion

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
The Boussinesq system of hydrodynamics equations, arises from a zero order approximation to the coupling between the Navier-Stokes equations and the thermodynamic equation. The presence of density gradients in a fluid means that gravitational potential energy can be converted into motion through the action of bouyant forces.
2nd World Congress of Nonlinear Analysis. ATHENS, GREECE JUL 10-17, 1996
UCM subjects
A. Antontsev, J.I. Diaz. Space and time localization in the flow of two inmiscible fluids through a porous medium: energy methods applied to systems.Nonlinear Anal., Theory, Meth. & App., Vol 16 (No 4) (1991), pp. 299–313 Antontsev A. & Diaz J.I., Energy Methods for Free Boundary Problems in Continuum Mechanics. To appear in Birkhauser. P. Benilan. Equations d'evolution dans un space de Banach quelconque et applications.ThesisUniv. de Paris Sud, Orsay (1972) J. Boussinesq.Theorie analytique de la chaleur, Vol.2 Gauthier-Villars, Orsay (1903) E. Casas. The Navier-Stokes equations coupled with the heat equation: analysis and control. Control and Cybernetics, Vol 23 (No 4) (1994), pp. 605–620 J.I. Diaz, G. Galiano. Topological Methods in Nonlinear Analysis. To appear in Journal of the Juliusz Schauder CenterWarsaw, Paris (1997) J.I. Diaz, L. Veron. Local vanishing properties of solutions to elliptic and parabolic equations. Trans. Am. Math. Soc., 290 (1985), pp. 787–814 J.I. Diaz, I.I. Vrabie. Compactness of the Green Operator of Nonlinear Diffusion Equations: applications to Boussinesq type systems in Fluid Dynamics. Topological Methods in Nonlinear Analysts, Journal of the Juliusz Schauder Center, Vol 4 (1994), pp. 399–416 C. Foias, O. Manley, R. Temam. Attractors for the Benard Problem: existence and physical bounds on their fractal dimension.Nonlinear Analysis, Vol 11 (No 8) (1987), pp. 939–967 O. Gontscharowa. Solvability of the nonstationary problem for the free convection equation with the temperature dependent viscosity No 96 Dinamika sploshnoi sredy (1990) O. Gontscharowa. About the uniqueness of the solution of the two-dimensional nonstationary problem for the equations of free convection with viscousity depending on temperature Red Sib.mat.j. No 260, V92 (1990) D.D. Joseph. Berlin Stability of fluid motions I and II. Springer Tracts in Natural Philosophy, Vol 28 (1976) O.A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flow (2nd Edition)Gordon & Breach, Poland (1969) O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'ceva.Linear and Quasilinear Equations of Parabolic type. Transi. Math. Monographs, Vol 23Amer. Math. Soc., New York (1968) J.M. Milhaljan. A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid Astrophysics J., Vol 136 (1962), p. 1126 A. Oberbeck. Uber die Wärmeleitung der Flüssigkeiten bei der Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Annalen der Physik und Chemie, 7 (1879), p. 271 J.F. Rodrigues. Weak solutions for thermoconvective flows of Boussinesq-Stefan type Harlow ,in: J.F. Rodrigues, A. Sequeira (Eds.), Mathematical Topics in Fluid Mechanics, Pitman Research Notes in Mathematics Series, No 274 (1992), pp. 93–116 J. Rulla. Weak solutions to Stefan problems with prescribed convection SIAM J. Math. Anal., Vol 18 (No 6) (1987), pp. 1784–1800 R. Temam. Navier-Stokes Equations, Theory and Numerical Analysis (3rd revised edition)North-Holland, Providence (1984)