Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Magnetic versus non-magnetic pinning of vortices in superconducting films: Role of effective penetration depth

Loading...
Thumbnail Image

Full text at PDC

Publication date

2016

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics
Citations
Google Scholar

Citation

Abstract

In order to compare magnetic and non-magnetic pinning, we have nanostructured two superconducting films with the regular arrays of pinning centers: Cu (non-magnetic) dots in one case and Py (magnetic) dots in the other. For low applied magnetic fields, when all the vortices are pinned in the artificial inclusions, the magnetic dots prove to be better pinning centers, as has been generally accepted. Unexpectedly, when the magnetic field is increased and interstitial vortices appear, the results are very different: we show how the stray field generated by the magnetic dots can produce an effective reduction of the penetration length. This results in strong consequences in the transport properties, which, depending on the dot separation, can lead to an enhancement or worsening of the transport characteristics. Therefore, the election of the magnetic or non-magnetic character of the pinning sites for an effective reduction of dissipation will depend on the range of the applied magnetic field. Published by AIP Publishing.

Research Projects

Organizational Units

Journal Issue

Description

©American Institute of Physics. We thank the support from the Spanish Ministerio de Economia y Competitividad Grant No. FIS2013-45469 and CAM Grant No. P2013/MIT-2850 and EU COST Action MP1201.

Keywords

Collections