Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Matrix product unitaries: structure, symmetries, and topological invariants

Loading...
Thumbnail Image

Full text at PDC

Publication date

2017

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Citations
Google Scholar

Citation

Abstract

Matrix product vectors form the appropriate framework to study and classify one-dimensional quantum systems. In this work, we develop the structure theory of matrix product unitary operators (MPUs) which appear e.g. in the description of time evolutions of one-dimensional systems. We prove that all MPUs have a strict causal cone, making them quantum cellular automata (QCAs), and derive a canonical form for MPUs which relates different MPU representations of the same unitary through a local gauge. We use this canonical form to prove an index theorem for MPUs which gives the precise conditions under which two MPUs are adiabatically connected, providing an alternative derivation to that of (Gross et al 2012 Commun. Math. Phys. 310 419) for QCAs. We also discuss the effect of symmetries on the MPU classification. In particular, we characterize the tensors corresponding to MPU that are invariant under conjugation, time reversal, or transposition. In the first case, we give a full characterization of all equivalence classes. Finally, we give several examples of MPU possessing different symmetries.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections