Bases for the homology groups of the Hilbert scheme of points in the plane
dc.contributor.author | Mallavibarrena Martínez de Castro, Raquel | |
dc.contributor.author | Sols Lucía, Ignacio | |
dc.date.accessioned | 2023-06-20T18:42:30Z | |
dc.date.available | 2023-06-20T18:42:30Z | |
dc.date.issued | 1990-05 | |
dc.description.abstract | Let Hilb d P 2 =Hilb d P 2 C denote the Hilbert scheme parametrizing 0-dimensional, length-d subschemes of the plane. The authors determine an additive basis for the Chow group A.(Hilb d P 2 ) consisting of classes of closures of locally closed subschemes of P 2 . A key feature of this basis is that it consists of cycle classes whose generic points correspond to reduced length-d subschemes, making it convenient for use in enumerative problems. This is in contrast to the basis given by G. Ellingsrud and S. A. Strømme that arises from a cell decomposition [Invent Math. 91 (1988), no. 2, 365–370]. The authors' method of proof involves showing that their basis specializes (via an intermediate basis) to that of Ellingsrud and Strømme. As applications of their main results and methods, the authors employ a G m -action on P 2 and the Ellingsrud-Strømme basis for A.(Hilb d P 2 ) to give a basis for the Chow group of the variety W ∗ of Schubert triangles. Their results agree with work of J. Roberts and R. Speiser [Comm. Algebra 15 (1987), no. 9, 1929–1966] and A. Collino and W. Fulton [Mém. Soc. Math. France (N.S.) No. 38 (1989), 75–117]. The paper concludes with enumerative applications using the authors' basis for A.(Hilb d P 2 ) to verify formulas conjectured by Schubert for the number of bitangent contacts between members of two families of moving plane curves. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | C.A.I.C.Y.T. | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20589 | |
dc.identifier.issn | 0010-437X | |
dc.identifier.officialurl | http://archive.numdam.org/ARCHIVE/CM/CM_1990__74_2/CM_1990__74_2_169_0/CM_1990__74_2_169_0.pdf | |
dc.identifier.relatedurl | http://www.numdam.org/?lang=en | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58383 | |
dc.issue.number | 2 | |
dc.journal.title | Compositio Mathematica | |
dc.language.iso | eng | |
dc.page.final | 201 | |
dc.page.initial | 169 | |
dc.publisher | Cambridge University Press | |
dc.relation.projectID | PB86-0036 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512 | |
dc.subject.keyword | Hilbert scheme | |
dc.subject.keyword | Basis for the Chow group | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Bases for the homology groups of the Hilbert scheme of points in the plane | |
dc.type | journal article | |
dc.volume.number | 74 | |
dcterms.references | Bialynicki-Birula, " Some theorems on actions of algebraic groups ". Ann. of Math. Vol. 98 No. 3 (1978). Briançon, " Description de Hilbn C {x, y}". Inv. Math. 41 (1977) 45-89. Collino, "Evidence for a conjecture of Ellingsrud-Strømme on the Chow ring of Hilbd P2". Illinois J. of Math. Vol. 32, n. 2 (1988). Elencwajg-Le Barz, " Une base de Pic(Hilbk P2)" Comptes rendus, 297 I, 1983 (175-178). Elencwajg-Le Barz, " L'anneau de Chow des triangles du plan " Comp. Math. 71 (1989) 85-119. Elencwajg-Le Barz, " Explicit computations in Hilb3 P2" L.N.M.1311 pp. 76-100. Ellingsrud-Strømme, "On the homology of the Hilbert scheme of points in the plane". Inv. Math. 87, 343-352 (1987). Ellingsrud-Strømme, " On a cell decomposition of the Hilbert scheme of points in the plane". Inv. Math. 91, 365-370. (1988). Hartshorne, " Algebraic Geometry ". Springer Verlag. GTM 52 (1977). Mallavibarrena, " Les groupes de Chow de Hilb4 P2 et une base pour A2, A3, A2d-2, A2d-3 de Hilbd P2" Comptes rendus, t.303 I 13 1986. Mallavibarrena, " Validité de la formule classique des trisecantes stationnaires". Comptes rendus, t 303 I 16, 1986. Mallavibarrena, " El método de las bases de los grupos de Chow de Hilbd p2 en geometria enumerativa". Thesis. 1987. Roberts-Speiser, " Enumerative Geometry of Triangles, I" Comm. in Alg. 12(10) 1213-1255 (1984). Roberts-Spelser, " Enumerative Geometry of Triangles, III" Comm. in Alg. 15(9) 1929-1966 (1987). Schubert, " Anzahlgeometrische Behandlung des Dreiecks " Math. Ann. XVII 153-212, 1880. Zeuthen, Comptes rendus, t. 809. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6d35def4-3d5f-4978-800f-82b7edf76b5d | |
relation.isAuthorOfPublication.latestForDiscovery | 6d35def4-3d5f-4978-800f-82b7edf76b5d |
Download
Original bundle
1 - 1 of 1