Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Bases for the homology groups of the Hilbert scheme of points in the plane

dc.contributor.authorMallavibarrena Martínez de Castro, Raquel
dc.contributor.authorSols Lucía, Ignacio
dc.date.accessioned2023-06-20T18:42:30Z
dc.date.available2023-06-20T18:42:30Z
dc.date.issued1990-05
dc.description.abstractLet Hilb d P 2 =Hilb d P 2 C denote the Hilbert scheme parametrizing 0-dimensional, length-d subschemes of the plane. The authors determine an additive basis for the Chow group A.(Hilb d P 2 ) consisting of classes of closures of locally closed subschemes of P 2 . A key feature of this basis is that it consists of cycle classes whose generic points correspond to reduced length-d subschemes, making it convenient for use in enumerative problems. This is in contrast to the basis given by G. Ellingsrud and S. A. Strømme that arises from a cell decomposition [Invent Math. 91 (1988), no. 2, 365–370]. The authors' method of proof involves showing that their basis specializes (via an intermediate basis) to that of Ellingsrud and Strømme. As applications of their main results and methods, the authors employ a G m -action on P 2 and the Ellingsrud-Strømme basis for A.(Hilb d P 2 ) to give a basis for the Chow group of the variety W ∗ of Schubert triangles. Their results agree with work of J. Roberts and R. Speiser [Comm. Algebra 15 (1987), no. 9, 1929–1966] and A. Collino and W. Fulton [Mém. Soc. Math. France (N.S.) No. 38 (1989), 75–117]. The paper concludes with enumerative applications using the authors' basis for A.(Hilb d P 2 ) to verify formulas conjectured by Schubert for the number of bitangent contacts between members of two families of moving plane curves.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipC.A.I.C.Y.T.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20589
dc.identifier.issn0010-437X
dc.identifier.officialurlhttp://archive.numdam.org/ARCHIVE/CM/CM_1990__74_2/CM_1990__74_2_169_0/CM_1990__74_2_169_0.pdf
dc.identifier.relatedurlhttp://www.numdam.org/?lang=en
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58383
dc.issue.number2
dc.journal.titleCompositio Mathematica
dc.language.isoeng
dc.page.final201
dc.page.initial169
dc.publisherCambridge University Press
dc.relation.projectIDPB86-0036
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordHilbert scheme
dc.subject.keywordBasis for the Chow group
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleBases for the homology groups of the Hilbert scheme of points in the plane
dc.typejournal article
dc.volume.number74
dcterms.referencesBialynicki-Birula, " Some theorems on actions of algebraic groups ". Ann. of Math. Vol. 98 No. 3 (1978). Briançon, " Description de Hilbn C {x, y}". Inv. Math. 41 (1977) 45-89. Collino, "Evidence for a conjecture of Ellingsrud-Strømme on the Chow ring of Hilbd P2". Illinois J. of Math. Vol. 32, n. 2 (1988). Elencwajg-Le Barz, " Une base de Pic(Hilbk P2)" Comptes rendus, 297 I, 1983 (175-178). Elencwajg-Le Barz, " L'anneau de Chow des triangles du plan " Comp. Math. 71 (1989) 85-119. Elencwajg-Le Barz, " Explicit computations in Hilb3 P2" L.N.M.1311 pp. 76-100. Ellingsrud-Strømme, "On the homology of the Hilbert scheme of points in the plane". Inv. Math. 87, 343-352 (1987). Ellingsrud-Strømme, " On a cell decomposition of the Hilbert scheme of points in the plane". Inv. Math. 91, 365-370. (1988). Hartshorne, " Algebraic Geometry ". Springer Verlag. GTM 52 (1977). Mallavibarrena, " Les groupes de Chow de Hilb4 P2 et une base pour A2, A3, A2d-2, A2d-3 de Hilbd P2" Comptes rendus, t.303 I 13 1986. Mallavibarrena, " Validité de la formule classique des trisecantes stationnaires". Comptes rendus, t 303 I 16, 1986. Mallavibarrena, " El método de las bases de los grupos de Chow de Hilbd p2 en geometria enumerativa". Thesis. 1987. Roberts-Speiser, " Enumerative Geometry of Triangles, I" Comm. in Alg. 12(10) 1213-1255 (1984). Roberts-Spelser, " Enumerative Geometry of Triangles, III" Comm. in Alg. 15(9) 1929-1966 (1987). Schubert, " Anzahlgeometrische Behandlung des Dreiecks " Math. Ann. XVII 153-212, 1880. Zeuthen, Comptes rendus, t. 809.
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sols16.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format

Collections