Moderate acute alcohol intoxication has minimal effect on surround suppression measured with a motion direction discrimination task.

Loading...
Thumbnail Image
Full text at PDC
Publication date

2015

Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Scholar One
Citations
Google Scholar
Citation
Angelucci, A., & Bressloff, P. C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extraclassical receptive field surround of primate V1 neurons. Progressive Brain Research, 154, 93–120. Betts, L. R., Sekuler, A. B., & Bennett, P. J. (2009). Spatial characteristics of center-surround antagonism in younger and older adults. Journal of Vision, 9(1):25, 1–15, http://www.journalofvision.org/ content/9/1/25, doi:10.1167/9.1.25. [PubMed] [Article] Betts, L. R., Sekuler, A. B., & Bennett, P. J. (2012). Spatial characteristics of motion-sensitive mechanisms change with age and stimulus spatial frequency. Vision Research, 53(1), 1–14. Betts, L. R., Taylor, C. P., Sekuler, A. B., & Bennett, P. J. (2005). Aging reduces center-surround antagonism in visual motion processing. Neuron, 45(3), 361–366. Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1(8476), 307–310. Caspary, D. M., Hughes, L. F., & Ling, L. L. (2013). Age-related GABAA receptor changes in rat auditory cortex. Neurobiology of Aging, 34(5), 1486–1496. Churan, J., Khawaja, F. A., Tsui, J. M., & Pack, C. C. (2008). Brief motion stimuli preferentially activate surround-suppressed neurons in macaque visual area MT. Current Biology, 18(22), R1051–1052. Deitrich, R. A., Dunwiddie, T. V., Harris, R. A., & Erwin, V. G. (1989). Mechanism of action of ethanol: Initial central nervous system actions. Pharmacological Reviews, 41(4), 489–537. Foss-Feig, J. H., Tadin, D., Schauder, K. B., & Cascio, C. J. (2013). A substantial and unexpected enhancement of motion perception in autism. Journal of Neuroscience, 33(19), 8243–8249. Glasser, D. M., & Tadin, D. (2010). Low-level mechanisms do not explain paradoxical motion percepts. Journal of Vision, 10(4):20, 1–29, http:// www.journalofvision.org/content/10/4/20, doi:10. 1167/10.4.20. [PubMed] [Article] Glasser, D. M., & Tadin, D. (2013). Reliable nonveridical perception of brief moving stimuli. Journal of Vision, 13(9):764, http://www.journalofvision. org/content/13/9/764, doi:10.1167/13.9.764. [Abstract] Golomb, J. D., McDavitt, J. R., Ruf, B. M., Chen, J. I., Saricicek, A., Maloney, K. H., & Bhagwagar, Z. (2009). Enhanced visual motion perception in major depressive disorder. Journal of Neuroscience, 29(28), 9072–9077. Harris, R. A., Proctor, W. R., McQuilkin, S. J., Klein, R. L., Mascia, M. P., Whatley, V., et al. (1995). Ethanol increases GABAA responses in cells stably transfected with receptor subunits. Alcoholism Clinical and Experimental Research, 19(1), 226–232. Hill, J. C., & Toffolon, G. (1990). Effect of alcohol on sensory and sensorimotor visual functions. Journal of Studies on Alcohol, 51(2), 108–113. Hill, S. Y., Powell, B., & Goodwin, D. W. (1973). Critical flicker fusion: objective measure of alcohol tolerance? The Journal of Nervous and Mental Disease, 157(1), 46–49. Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception 36 ECVP Abstract Supplement. Leventhal, A. G., Wang, Y., Pu, M., Zhou, Y., & Ma, Y. (2003). GABA and its agonists improved visual cortical function in senescent monkeys. Science, 300(5620), 812–815. Liu, L., & Pack, C. (2014). Bidirectional manipulation of GABAergic inhibition in MT: A comparison of neuronal and psychophysical performance. Journal of Vision, 14(10):13, http://www.journalofvision. org/content/14/10/13, doi:10.1167/14.10.13. [Abstract] Lobo, I. A., & Harris, R. A. (2008). GABA(A) receptors and alcohol. Pharmacology, Biochemistry and Behavior, 90(1), 90–94. Luscher, B., Shen, Q., & Sahir, N. (2011). The GABAergic deficit hypothesis of major depressive disorder. Molecular Psychiatry, 16(4), 383–406. MacArthur, R. D., & Sekular, R. (1982). Alcohol and motion perception. Perception & Psychophysics, 31(5), 502–505. Melnick, M. D., Harrison, B. R., Park, S., Bennetto, L., & Tadin, D. (2013). A strong interactive link between sensory discriminations and intelligence. Current Biology, 23(11), 1013–1017. Neri, P., & Levi, D. (2009). Surround motion silences signals from same-direction motion. Journal of Neurophysiology, 102(5), 2594–2602. Ozeki, H., Finn, I. M., Schaffer, E. S., Miller, K. D., & Ferster, D. (2009). Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron, 62(4), 578–592. Pack, C. C., Hunter, J. N., & Born, R. T. (2005). Contrast dependence of suppressive influences in cortical area MT of alert macaque. Journal of Neurophysiology, 93(3), 1809–1815. Pearson, P., & Timney, B. (1998). Effects of moderate blood alcohol concentrations on spatial and temporal contrast sensitivity. Journal of Studies on Alcohol, 59(2), 163–173. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. Peterson, M. R., Li, B., & Freeman, R. D. (2006). Direction selectivity of neurons in the striate cortex increases as stimulus contrast is decreased. Journal of Neurophysiology, 95(4), 2705–2712. Poe, B. H., Linville, C., & Brunso-Bechtold, J. (2001). Age-related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by the physical dissector. Journal of Comparative Neurology, 439(1), 65–72. Schwabe, L., Ichida, J. M., Shushruth, S., Mangapathy, P., & Angelucci, A. (2010). Contrast-dependence of surround suppression in Macaque V1: Experimental testing of a recurrent network model. Neuroimage, 52(3), 777–792. Serrano-Pedraza, I., Hogg, E. L., & Read, J. C. (2011). Spatial non-homogeneity of the antagonistic surround in motion perception. Journal of Vision, 11(2):3, 1–9, http://www.journalofvision.org/ content/11/2/3, doi:10.1167/11.2.3. [PubMed] [Article] Story, J. L., Eidelberg, E., & French, J. D. (1961). Electrographic changes induced in cats by ethanol intoxication. Archives of Neurology, 5, 565–570. Tadin, D., Kim, J., Doop, M. L., Gibson, C., Lappin, J. S., Blake, R., et al. (2006). Weakened centersurround interactions in visual motion processing in schizophrenia. Journal of Neuroscience, 26(44), 11403–11412. Tadin, D., & Lappin, J. S. (2005). Optimal size for perceiving motion decreases with contrast. Vision Research, 45(16), 2059–2064. Tadin, D., Lappin, J. S., Gilroy, L. A., & Blake, R. (2003). Perceptual consequences of center-surround antagonism in visual motion processing. Nature, 424(6946), 312–315. Tsui, J. M., & Pack, C. C. (2011). Contrast sensitivity of MT receptive field centers and surrounds. Journal of Neurophysiology, 106(4), 1888–1900. Wassef, A., Baker, J., & Kochan, L. D. (2003). GABA and schizophrenia: A review of basic science and clinical studies. Journal of Clinical Psychopharmacology, 23(6), 601–640. Watson, A. B., & Pelli, D. G. (1983). QUEST: A Bayesian adaptive psychometric method. Perception & Psychophysics, 33(2), 113–120. Watten, R. G., & Lie, I. (1996). Visual functions and acute ingestion of alcohol. Ophthalmic and Physiological Optics, 16(6), 460–466. Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63(8), 1293– 1313. Widmark, E. M. P. (1981). Principles and applications of medicolegal alcohol determination (R. C. Baselt, Trans.). Davis, CA: Davis Biomedical Publications. (Original work published 1932) Yoon, J. H., Maddock, R. J., Rokem, A., Silver, M. A., Minzenberg, M. J., Ragland, J. D., & Carter, C. S. (2010). GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. Journal of Neuroscience, 30(10), 3777–3781.
Abstract
A well-studied paradox of motion perception is that, in order to correctly judge direction in high-contrast stimuli, subjects need to observe motion for longer in large stimuli than in small stimuli. This effect is one of several perceptual effects known generally as "surround suppression." It is usually attributed to center-surround antagonism between neurons in visual cortex, believed to be mediated by GABA-ergic inhibition. Accordingly, several studies have reported that this index of surround suppression is reduced in groups known to have reduced GABA-ergic inhibition, including older people and people with schizophrenia and major depressive disorder. In this study, we examined the effect on this index of moderate amounts of ethanol alcohol. Among its many effects on the nervous system, alcohol potentiates GABA-ergic transmission. We therefore hypothesized that it should further impair the perception of motion in large stimuli, resulting in a stronger surround-suppression index. This prediction was not borne out. Alcohol consumption slightly worsened duration thresholds for both large and small stimuli, but their ratio did not change significantly.
Research Projects
Organizational Units
Journal Issue
Description
Keywords
Collections