Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

KIR channels tune electrical communication in cerebral arteries

dc.contributor.authorSancho González, María
dc.contributor.authorSamson, Nina C.
dc.contributor.authorHald, Bjorn O.
dc.contributor.authorHashad, Ahmed M.
dc.contributor.authorMarrelli, Sean P.
dc.contributor.authorBrett, Suzanne E.
dc.contributor.authorWelsh, Donald G.
dc.date.accessioned2024-11-26T07:18:14Z
dc.date.available2024-11-26T07:18:14Z
dc.date.issued2016-07-28
dc.description.abstractThe conducted vasomotor response reflects electrical communication in the arterial wall and the distance signals spread is regulated by three factors including resident ion channels. This study defined the role of inward-rectifying K+ channels (KIR) in governing electrical communication along hamster cerebral arteries. Focal KCl application induced a vasoconstriction that conducted robustly, indicative of electrical communication among cells. Inhibiting dominant K+ conductances had no attenuating effect, the exception being Ba2+ blockade of KIR. Electrophysiology and Q-PCR analysis of smooth muscle cells revealed a Ba2+-sensitive KIR current comprised of KIR2.1/2.2 subunits. This current was surprisingly small and when incorporated into a model, failed to account for the observed changes in conduction. We theorized a second population of KIR channels exist and consistent with this idea, a robust Ba2+-sensitive KIR2.1/2.2 current was observed in endothelial cells. When both KIR currents were incorporated into, and then inhibited in our model, conduction decay was substantive, aligning with experiments. Enhanced decay was ascribed to the rightward shift in membrane potential and the increased feedback arising from voltage-dependent-K+ channels. In summary, this study shows that two KIR populations work collaboratively to govern electrical communication and the spread of vasomotor responses along cerebral arteries.
dc.description.departmentDepto. de Fisiología
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipCanadian Institute of Health Research
dc.description.statuspub
dc.identifier.citationSancho M, Samson NC, Hald BO, Hashad AM, Marrelli SP, Brett SE, Welsh DG. KIR channels tune electrical communication in cerebral arteries. J Cereb Blood Flow Metab. 2017;37(6):2171-2184. doi: 10.1177/0271678X16662041.
dc.identifier.doi10.1177/0271678x16662041
dc.identifier.issn0271-678X
dc.identifier.issn1559-7016
dc.identifier.officialurlhttps://doi.org/10.1177/0271678X16662041
dc.identifier.relatedurlhttps://journals.sagepub.com/doi/full/10.1177/0271678X16662041
dc.identifier.urihttps://hdl.handle.net/20.500.14352/111044
dc.issue.number6
dc.journal.titleJournal of Cerebral Blood Flow & Metabolism
dc.language.isoeng
dc.page.final2184
dc.page.initial2171
dc.publisherSAGE Publications
dc.rights.accessRightsrestricted access
dc.subject.cdu612
dc.subject.keywordElectrophysiology
dc.subject.keywordendothelium
dc.subject.keywordmicrocirculation
dc.subject.keywordpotassium channels
dc.subject.keywordsmooth muscle
dc.subject.ucmCiencias Biomédicas
dc.subject.unesco24 Ciencias de la Vida
dc.titleKIR channels tune electrical communication in cerebral arteries
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number37
dspace.entity.typePublication
relation.isAuthorOfPublication05e2c82b-2a26-438c-893d-84ac291d9fb5
relation.isAuthorOfPublication.latestForDiscovery05e2c82b-2a26-438c-893d-84ac291d9fb5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
kir-channels-tune-electrical-communication-in-cerebral-arteries.pdf
Size:
862.62 KB
Format:
Adobe Portable Document Format

Collections