Current forms and gauge invariance

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorMuñoz Masqué, Jaime
dc.date.accessioned2023-06-20T10:36:44Z
dc.date.available2023-06-20T10:36:44Z
dc.date.issued2004
dc.description.abstractLet C be the bundle of connections of a principal G-bundle π: P → M,and let V be the vector bundle associated with P by a linear representation G → GL(V ) on a finite-dimensional vector space V . The Lagrangians on J 1(C ×M V) whose current form is gauge invariant, are described and the gauge-invariant Lagrangians on J 1(V) are classified.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22441
dc.identifier.doi10.1088/0305-4470/37/19/008
dc.identifier.issn0305-4470
dc.identifier.officialurlhttp://iopscience.iop.org/0305-4470/37/19/008
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50768
dc.issue.number19
dc.journal.titleJournal of physics A: Mathematical and general
dc.language.isoeng
dc.page.final5227
dc.page.initial5211
dc.publisherIOP Publishing
dc.rights.accessRightsrestricted access
dc.subject.cdu514.745
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleCurrent forms and gauge invariance
dc.typejournal article
dc.volume.number37
dcterms.referencesBetounes D 1989 The geometry of gauge–particle field interaction: a generalization of Utiyama’s theorem J. Geom. Phys. 6 107–25 Bleecker D 1981 Gauge Theory and Variational Principles (Reading, MA: Addison-Wesley) Bredon G E 1972 Introduction to Compact Transformation Groups (New York: Academic) Castrillón López M, Hernández Encinas L and Muñoz Masqué J 2000 Gauge invariance on interaction U(1)bundles J. Phys. A: Math. Gen. 33 3253–67 Castrillón López M and Muñoz Masqué J 2001 The geometry of the bundle of connections Math. Z. 236 797–811 Castrillón López M and Muñoz Masqué J 2003 U(1)-invariant current forms Rep. Math. Phys. 52 423–35 Eck D J 1981 Gauge-natural bundles and generalized gauge theories Mem. Am. Math. Soc. 247 García Pérez P 1974 The Poincaré–Cartan invariant in the calculus of variations Symposia Mathematica, Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973 vol 14 (London: Academic)pp 219–46 García Pérez P 1972 Connections and 1-jet bundles Rend. Sem. Mat. Univ. Padova 47 227–42 García Pérez P 1977 Gauge algebras, curvature and symplectic structure J. Differ. Geom. 12 209–27 García Pérez P and Pérez RendónA1978 Reducibility of the symplectic structure of minimal interactions Lecture Notes in Math. (Proc. Conf. Differential GeometricalMethods in Mathematical Physics, II’, University Bonn (Bonn, 1977) vol 676 (Berlin: Springer) pp 409–33 Guillemin V and Sternberg S 1984 Symplectic Techniques in Physics (Cambridge: Cambridge University Press) Kobayashi S and Nomizu K 1963 Foundations of Differential Geometry vol 1 (New York: Wiley) Schwarz G W 1975 Smooth functions invariant under the action of a compact Lie group Topology 14 63–8 Serre J-P 1987 Complex Semisimple Lie Algebras (New York: Springer) Utiyama R 1956 Invariant theoretical interpretation of interaction Phys. Rev. 101 1597–1607
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Castrillon-current.pdf
Size:
211.63 KB
Format:
Adobe Portable Document Format

Collections