Lattice model for kinetics and grain-size distribution in crystallization
dc.contributor.author | Castro, Mario | |
dc.contributor.author | Sanchez, A. | |
dc.contributor.author | Domínguez-Adame Acosta, Francisco | |
dc.date.accessioned | 2023-06-20T19:10:49Z | |
dc.date.available | 2023-06-20T19:10:49Z | |
dc.date.issued | 2000-03-01 | |
dc.description | © 2000 The American Physical Society. This work was supported by CAM (Madrid, Spain) under Project No. 07N/0034/98 and by DGESIC (Spain) under Project No. PB96-0119. The authors wish to thank T. Rodríguez, A. Rodríguez, J. Olivares, and C. Ballesteros for simulating dicussions on experimental issues. | |
dc.description.abstract | We propose a simple, versatile, and fast computational model to understand the deviations from the well-known Kolmogorov-Johnson-Mehl-Avrami kinetic theory found in metal recrystallization and amorphous semiconductor crystallization. Our model describes in detail the kinetics of the transformation and the grain size distribution of the product material, and is in good agreement with the available experimental data. Other morphological and kinetic features amenable of experimental observation are outlined, suggesting directions for further validation of the model. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CAM | |
dc.description.sponsorship | DGESIC (Spain) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27568 | |
dc.identifier.doi | 10.1103/PhysRevB.61.6579 | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevB.61.6579 | |
dc.identifier.relatedurl | http://journals.aps.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59356 | |
dc.issue.number | 10 | |
dc.journal.title | Physical Review B | |
dc.language.iso | eng | |
dc.page.final | 6586 | |
dc.page.initial | 6579 | |
dc.publisher | American Physical Society | |
dc.relation.projectID | Project No. 07N/0034/98 | |
dc.relation.projectID | Project No. PB96-0119 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Avrami Kinetics | |
dc.subject.keyword | Growth | |
dc.subject.keyword | Nucleation | |
dc.subject.keyword | Recrystallization | |
dc.subject.keyword | Silicon | |
dc.subject.keyword | Films | |
dc.subject.ucm | Física de materiales | |
dc.title | Lattice model for kinetics and grain-size distribution in crystallization | |
dc.type | journal article | |
dc.volume.number | 61 | |
dcterms.references | 1. J. S. Im and R. S. Spolisi, MRS Bull. 21 (3), 39 (1996). 2. R. Bergmann, G. Oswald, M. Albrecht, and J. H. Werner, Solid State Phenom. 51-52, 515 (1996). 3. K. Zellama, P. Germain, S. Squelard, J. C. Bourgoin, and P. A. Thomas, J. Appl. Phys. 50, 6995 (1979). 4. H. V. Atkinson, Acta Metall. 36, 469 (1988). 5. R. D. Doherty, Prog. Mater. Sci. 42, 39 (19979. 6. R. Sinclair, J. Morgiel, A. S. Kirtikar, I. W. Wu, and A. Chiang, Ultramicroscopy 51, 41 (1993). 7. C. W. Price, Acta Metall. Mater. 38, 727 (1990), and references therein. 8. A. E. Kolmogorov, Akad. Nauk. SSSR Izv. Ser. Mat. 1, 355 (1937); W. A. Johnson and R. F. Mehl, Trans. Am. Inst. Min., Metall. Pet. Eng. 135, 416 (1939); M. Avrami, J. Chem. Phys. 7, 103 (1939). 9. V. Erukhimovitch and J. Baram, Phys. Rev. B 50, 5854 (1994); 51, 6221 (1995). 10. E. Pinedau and D. Crespo, Phys. Rev. B 60, 3104 (1999). 11. V. Sessa, M. Fanfoni, and M. Tomellini, Phys. Rev. B 54, 836 (1996). 12. M. Fanfoni and M. Tomellini, Phys. Rev. B 54, 9828 (1996). 13. C. W. Van Siclen, Phys. Rev. B 54, 11 845 (1996). 14. R. W. Cahn, J. Inst. Met. 76, 121 (1949). 15. R. W. Cahn, Proc. Phys. Soc., London, Sect. A 63A, 323 (1950). 16. P. A. Beck, TMS AIME 194, 979 (1972). 17. M. Castro, F. Domínguez-Adame, A. Sánchez, and T. Rodríguez, Appl. Phys. Lett. 75, 2205 (1999). 18. In polycrystalline silicon, it has been observed that direction (111) is preferred throughout the transformation, and that it mainly nucleates at the interface with the underlying substrate. 19. H. J. Frost and C. V. Thompson, Acta Metall. 35, 529 (1987). 20. D. Weaire, J. P. Kermode, and J. Wejchert, Philos. Mag. B 53, L101 (1986). 21. P. A. Mulheran, Acta Metall. Mater. 42, 3589 (1994). 22. Y. Masaki, P. G. LeComber, and A. G. Fitzgerald, J. Appl. Phys. 74, 129 (1993). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | dbc02e39-958d-4885-acfb-131220e221ba | |
relation.isAuthorOfPublication.latestForDiscovery | dbc02e39-958d-4885-acfb-131220e221ba |
Download
Original bundle
1 - 1 of 1